Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 1;25(19):3889–3894. doi: 10.1093/nar/25.19.3889

Antigen structural requirements for recognition by a cyclobutane thymine dimer-specific monoclonal antibody.

Y Komatsu 1, T Tsujino 1, T Suzuki 1, O Nikaido 1, E Ohtsuka 1
PMCID: PMC146980  PMID: 9380513

Abstract

A monoclonal antibody (TDM-2) specific to a UV-induced cyclobutane pyrimidine dimer (T[cis-syn]T) has previously been established; however,the immunization had used UV-irradiated calf-thymus DNA containing a heterogeneous mixture of photoproduct sites. We investigated here the structural requirements of antigen recognition by the antibody using chemically synthesized antigen analogs. TDM-2 bound with cis-syn,but not trans-syn thymine dimer,and could bind strongly with four nucleotide analogs in which the cis-syn pyrimidine dimer was located in the center. Antigen analogs containing abasic linkers at the 5'- or 3'-side of the cis-syn cyclobutane pyrimidine dimer were synthesized and tested for binding to TDM-2. The results indicated that TDM-2 recognizes not only the cyclobutane ring but also both the 5'- and 3'-side nucleosides of the cyclobutane dimer. Furthermore,it was proved that either the 5'- or 3'-side phosphate group at a cyclobutane dimer site was absolutely required for the affinity to TDM-2. The antibody showed a strong binding to single stranded DNA but indicated little binding to double stranded DNA.

Full Text

The Full Text of this article is available as a PDF (90.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard D. W., Voss E. W., Jr Base specificity and idiotypy of anti-DNA autoantibodies reactive with synthetic nucleic acids. J Immunol. 1985 Nov;135(5):3372–3380. [PubMed] [Google Scholar]
  2. Braun R. P., Lee J. S. Equilibrium binding parameters of an autoimmune monoclonal antibody specific for double-stranded DNA. J Immunol. 1987 Jul 1;139(1):175–179. [PubMed] [Google Scholar]
  3. Cygler M., Boodhoo A., Lee J. S., Anderson W. F. Crystallization and structure determination of an autoimmune anti-poly(dT) immunoglobulin Fab fragment at 3.0 A resolution. J Biol Chem. 1987 Jan 15;262(2):643–648. [PubMed] [Google Scholar]
  4. Emlen W., Jarusiripipat P., Burdick G. A new ELISA for the detection of double-stranded DNA antibodies. J Immunol Methods. 1990 Aug 28;132(1):91–101. doi: 10.1016/0022-1759(90)90402-h. [DOI] [PubMed] [Google Scholar]
  5. Gentil A., Le Page F., Margot A., Lawrence C. W., Borden A., Sarasin A. Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells. Nucleic Acids Res. 1996 May 15;24(10):1837–1840. doi: 10.1093/nar/24.10.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herron J. N., He X. M., Ballard D. W., Blier P. R., Pace P. E., Bothwell A. L., Voss E. W., Jr, Edmundson A. B. An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins. 1991;11(3):159–175. doi: 10.1002/prot.340110302. [DOI] [PubMed] [Google Scholar]
  7. Husain I., Griffith J., Sancar A. Thymine dimers bend DNA. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2558–2562. doi: 10.1073/pnas.85.8.2558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jiang N., Taylor J. S. In vivo evidence that UV-induced C-->T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry. 1993 Jan 19;32(2):472–481. doi: 10.1021/bi00053a011. [DOI] [PubMed] [Google Scholar]
  9. Kamiya H., Murata N., Murata T., Iwai S., Matsukage A., Masutani C., Hanaoka F., Ohtsuka E. Cyclobutane thymine dimers in a ras proto-oncogene hot spot activate the gene by point mutation. Nucleic Acids Res. 1993 May 25;21(10):2355–2361. doi: 10.1093/nar/21.10.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kemmink J., Boelens R., Koning T., van der Marel G. A., van Boom J. H., Kaptein R. 1H NMR study of the exchangeable protons of the duplex d(GCGTTGCG).d(CGCAACGC) containing a thymine photodimer. Nucleic Acids Res. 1987 Jun 11;15(11):4645–4653. doi: 10.1093/nar/15.11.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee J. S., Dombroski D. F., Mosmann T. R. Specificity of autoimmune monoclonal Fab fragments binding to single-stranded deoxyribonucleic acid. Biochemistry. 1982 Sep 28;21(20):4940–4945. doi: 10.1021/bi00263a017. [DOI] [PubMed] [Google Scholar]
  12. Liuzzi M., Weinfeld M., Paterson M. C. Enzymatic analysis of isomeric trithymidylates containing ultraviolet light-induced cyclobutane pyrimidine dimers. I. Nuclease P1-mediated hydrolysis of the intradimer phosphodiester linkage. J Biol Chem. 1989 Apr 15;264(11):6355–6363. [PubMed] [Google Scholar]
  13. Matsunaga T., Mori T., Nikaido O. Base sequence specificity of a monoclonal antibody binding to (6-4)photoproducts. Mutat Res. 1990 May;235(3):187–194. doi: 10.1016/0921-8777(90)90073-e. [DOI] [PubMed] [Google Scholar]
  14. Mizuno T., Matsunaga T., Ihara M., Nikaido O. Establishment of a monoclonal antibody recognizing cyclobutane-type thymine dimers in DNA: a comparative study with 64M-1 antibody specific for (6-4)photoproducts. Mutat Res. 1991 Mar;254(2):175–184. doi: 10.1016/0921-8777(91)90009-e. [DOI] [PubMed] [Google Scholar]
  15. Mol C. D., Muir A. K., Lee J. S., Anderson W. F. Structure of an immunoglobulin Fab fragment specific for poly(dG).poly(dC). J Biol Chem. 1994 Feb 4;269(5):3605–3614. [PubMed] [Google Scholar]
  16. Mori T., Nakane M., Hattori T., Matsunaga T., Ihara M., Nikaido O. Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem Photobiol. 1991 Aug;54(2):225–232. doi: 10.1111/j.1751-1097.1991.tb02010.x. [DOI] [PubMed] [Google Scholar]
  17. Murata T., Iwai S., Ohtsuka E. Synthesis and characterization of a substrate for T4 endonuclease V containing a phosphorodithioate linkage at the thymine dimer site. Nucleic Acids Res. 1990 Dec 25;18(24):7279–7286. doi: 10.1093/nar/18.24.7279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakane H., Takeuchi S., Yuba S., Saijo M., Nakatsu Y., Murai H., Nakatsuru Y., Ishikawa T., Hirota S., Kitamura Y. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature. 1995 Sep 14;377(6545):165–168. doi: 10.1038/377165a0. [DOI] [PubMed] [Google Scholar]
  19. Roza L., van der Wulp K. J., MacFarlane S. J., Lohman P. H., Baan R. A. Detection of cyclobutane thymine dimers in DNA of human cells with monoclonal antibodies raised against a thymine dimer-containing tetranucleotide. Photochem Photobiol. 1988 Nov;48(5):627–633. doi: 10.1111/j.1751-1097.1988.tb02873.x. [DOI] [PubMed] [Google Scholar]
  20. Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
  21. Seela F., Kaiser K. Oligodeoxyribonucleotides containing 1,3-propanediol as nucleoside substitute. Nucleic Acids Res. 1987 Apr 10;15(7):3113–3129. doi: 10.1093/nar/15.7.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steinmetzer K., Zannis-Hadjopoulos M., Price G. B. Anti-cruciform monoclonal antibody and cruciform DNA interaction. J Mol Biol. 1995 Nov 17;254(1):29–37. doi: 10.1006/jmbi.1995.0596. [DOI] [PubMed] [Google Scholar]
  23. Taylor J. S., Garrett D. S., Brockie I. R., Svoboda D. L., Telser J. 1H NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CGTATTATGC).d(GCATAATACG). Biochemistry. 1990 Sep 18;29(37):8858–8866. doi: 10.1021/bi00489a049. [DOI] [PubMed] [Google Scholar]
  24. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  25. Wang C. I., Taylor J. S. Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9072–9076. doi: 10.1073/pnas.88.20.9072. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES