Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570

Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol.

S C Nagel 1, F S vom Saal 1, K A Thayer 1, M G Dhar 1, M Boechler 1, W V Welshons 1
PMCID: PMC1469837  PMID: 9074884

Abstract

We have developed a relative binding affinity-serum modified access (RBA-SMA) assay to determine the effect of serum on the access of xenoestrogens to estrogen receptors within intact cultured MCF-7 human breast cancer cells. We used this assay to predict low dose activity of two xenoestrogens in mice. In serum-free medium, bisphenol A, a component of polycarbonates and of resins used to line metal food cans, showed a lower relative binding affinity (RBA; 0.006%) than octylphenol (0.072%) and nonylphenol (0.026%), which are used as surfactants in many commercial products (all RBAs are relative to estradiol, which is equal to 100%). In 100% serum from adult men, bisphenol A showed a higher RBA (0.01%) than in serum-free medium and thus enhanced access to estrogen receptors relative to estradiol. In contrast, octylphenol showed a 22-fold decrease in RBA (0.0029%) and nonylphenol showed a 5-fold decrease in RBA (0.0039%) when measured in adult serum. This indicates that, relative to estradiol, serum had less of an inhibitory effect on the cell uptake and binding in MCF-7 cells of bisphenol A, while serum had a greater inhibitory effect on octylphenol and nonylphenol relative to estradiol. Extrapolation of these relative activities in adult serum predicted that the estrogenic bioactivity of bisphenol A would be over 500-fold greater than that of octylphenol in fetal mouse serum. Bisphenol A and octylphenol were fed to pregnant mice at 2 and 20 micrograms/kg/day. Exposure of male mouse fetuses to either dose of bisphenol A, but to neither dose of octylphenol, significantly increased their adult prostate weight relative to control males, which is consistent with the higher predicted bioactivity of bisphenol A than octylphenol in the RBA-SMA assay. In addition, our findings show for the first time that fetal exposure to environmentally relevant parts-per-billion (ppb) doses of bisphenol A, in the range currently being consumed by people, can alter the adult reproductive system in mice.

Full text

PDF
70

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akpoviroro J., Fotherby K. Assay of ethynyloestradiol in human serum and its binding to plasma proteins. J Steroid Biochem. 1980 Jul;13(7):773–779. doi: 10.1016/0022-4731(80)90228-9. [DOI] [PubMed] [Google Scholar]
  2. Arnold S. F., Klotz D. M., Collins B. M., Vonier P. M., Guillette L. J., Jr, McLachlan J. A. Synergistic activation of estrogen receptor with combinations of environmental chemicals. Science. 1996 Jun 7;272(5267):1489–1492. doi: 10.1126/science.272.5267.1489. [DOI] [PubMed] [Google Scholar]
  3. Arnold S. F., Robinson M. K., Notides A. C., Guillette L. J., Jr, McLachlan J. A. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environ Health Perspect. 1996 May;104(5):544–548. doi: 10.1289/ehp.96104544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Döhler K. D., Wuttke W. Changes with age in levels of serum gonadotropins, prolactin and gonadal steroids in prepubertal male and female rats. Endocrinology. 1975 Oct;97(4):898–907. doi: 10.1210/endo-97-4-898. [DOI] [PubMed] [Google Scholar]
  6. Grady L. H., Nonneman D. J., Rottinghaus G. E., Welshons W. V. pH-dependent cytotoxicity of contaminants of phenol red for MCF-7 breast cancer cells. Endocrinology. 1991 Dec;129(6):3321–3330. doi: 10.1210/endo-129-6-3321. [DOI] [PubMed] [Google Scholar]
  7. Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993 Jun;132(6):2279–2286. doi: 10.1210/endo.132.6.8504731. [DOI] [PubMed] [Google Scholar]
  8. Kuiper G. G., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  10. Lippman M., Bolan G., Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976 Dec;36(12):4595–4601. [PubMed] [Google Scholar]
  11. Martin P. M., Horwitz K. B., Ryan D. S., McGuire W. L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology. 1978 Nov;103(5):1860–1867. doi: 10.1210/endo-103-5-1860. [DOI] [PubMed] [Google Scholar]
  12. Montano M. M., Welshons W. V., vom Saal F. S. Free estradiol in serum and brain uptake of estradiol during fetal and neonatal sexual differentiation in female rats. Biol Reprod. 1995 Nov;53(5):1198–1207. doi: 10.1095/biolreprod53.5.1198. [DOI] [PubMed] [Google Scholar]
  13. Nonneman D. J., Ganjam V. K., Welshons W. V., Vom Saal F. S. Intrauterine position effects on steroid metabolism and steroid receptors of reproductive organs in male mice. Biol Reprod. 1992 Nov;47(5):723–729. doi: 10.1095/biolreprod47.5.723. [DOI] [PubMed] [Google Scholar]
  14. Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Read L. D., Greene G. L., Katzenellenbogen B. S. Regulation of estrogen receptor messenger ribonucleic acid and protein levels in human breast cancer cell lines by sex steroid hormones, their antagonists, and growth factors. Mol Endocrinol. 1989 Feb;3(2):295–304. doi: 10.1210/mend-3-2-295. [DOI] [PubMed] [Google Scholar]
  16. Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect. 1995 Dec;103(12):1136–1143. doi: 10.1289/ehp.951031136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sheehan D. M., Branham W. S., Medlock K. L., Shanmugasundaram E. R. Estrogenic activity of zearalenone and zearalanol in the neonatal rat uterus. Teratology. 1984 Jun;29(3):383–392. doi: 10.1002/tera.1420290309. [DOI] [PubMed] [Google Scholar]
  18. Sheehan D. M., Young M. Diethylstilbestrol and estradiol binding to serum albumin and pregnancy plasma of rat and human. Endocrinology. 1979 May;104(5):1442–1446. doi: 10.1210/endo-104-5-1442. [DOI] [PubMed] [Google Scholar]
  19. Skalsky H. L., Guthrie F. E. Binding of insecticides to human serum proteins. Toxicol Appl Pharmacol. 1978 Feb;43(2):229–235. doi: 10.1016/0041-008x(78)90002-9. [DOI] [PubMed] [Google Scholar]
  20. Sonnenschein C., Soto A. M., Fernandez M. F., Olea N., Olea-Serrano M. F., Ruiz-Lopez M. D. Development of a marker of estrogenic exposure in human serum. Clin Chem. 1995 Dec;41(12 Pt 2):1888–1895. [PubMed] [Google Scholar]
  21. Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sugimura Y., Cunha G. R., Donjacour A. A. Morphogenesis of ductal networks in the mouse prostate. Biol Reprod. 1986 Jun;34(5):961–971. doi: 10.1095/biolreprod34.5.961. [DOI] [PubMed] [Google Scholar]
  24. Welshons W. V., Grady L. H., Engler K. S., Judy B. M. Control of proliferation of MCF-7 breast cancer cells in a commercial preparation of charcoal-stripped adult bovine serum. Breast Cancer Res Treat. 1992;23(1-2):97–104. doi: 10.1007/BF01831481. [DOI] [PubMed] [Google Scholar]
  25. Welshons W. V., Jordan V. C. Adaptation of estrogen-dependent MCF-7 cells to low estrogen (phenol red-free) culture. Eur J Cancer Clin Oncol. 1987 Dec;23(12):1935–1939. doi: 10.1016/0277-5379(87)90062-9. [DOI] [PubMed] [Google Scholar]
  26. Welshons W. V., Murphy C. S., Koch R., Calaf G., Jordan V. C. Stimulation of breast cancer cells in vitro by the environmental estrogen enterolactone and the phytoestrogen equol. Breast Cancer Res Treat. 1987 Nov;10(2):169–175. doi: 10.1007/BF01810580. [DOI] [PubMed] [Google Scholar]
  27. Welshons W. V., Rottinghaus G. E., Nonneman D. J., Dolan-Timpe M., Ross P. F. A sensitive bioassay for detection of dietary estrogens in animal feeds. J Vet Diagn Invest. 1990 Oct;2(4):268–273. doi: 10.1177/104063879000200403. [DOI] [PubMed] [Google Scholar]
  28. West D. C., Sattar A., Kumar S. A simplified in situ solubilization procedure for the determination of DNA and cell number in tissue cultured mammalian cells. Anal Biochem. 1985 Jun;147(2):289–295. doi: 10.1016/0003-2697(85)90274-x. [DOI] [PubMed] [Google Scholar]
  29. White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994 Jul;135(1):175–182. doi: 10.1210/endo.135.1.8013351. [DOI] [PubMed] [Google Scholar]
  30. vom Saal F. S., Nagel S. C., Palanza P., Boechler M., Parmigiani S., Welshons W. V. Estrogenic pesticides: binding relative to estradiol in MCF-7 cells and effects of exposure during fetal life on subsequent territorial behaviour in male mice. Toxicol Lett. 1995 May;77(1-3):343–350. doi: 10.1016/0378-4274(95)03316-5. [DOI] [PubMed] [Google Scholar]
  31. vom Saal F. S. Sexual differentiation in litter-bearing mammals: influence of sex of adjacent fetuses in utero. J Anim Sci. 1989 Jul;67(7):1824–1840. doi: 10.2527/jas1989.6771824x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES