Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 1;25(19):3937–3943. doi: 10.1093/nar/25.19.3937

Stability of HPRT marker gene expression at different gene-targeted loci: observing and overcoming a position effect.

D W Melton 1, A M Ketchen 1, J Selfridge 1
PMCID: PMC146987  PMID: 9380520

Abstract

For sophisticated gene targeting procedures requiring two sequential selective steps to operate efficiently it is essential that the marker genes used are not prone to position effects. The double replacement gene targeting procedure, to produce mice with subtle gene alterations, is based on the use of hypoxanthine phosphoribosyltransferase ( HPRT) minigenes in HPRT-deficient embryonic stem cells. Our standard HPRTminigene, under the control of the mouse phosphoglycerate kinase-1 gene promoter, was stably expressed at five of six target loci examined. At the remaining locus, DNA ligase I (Lig1), expression of this minigene was highly unstable. A different minigene, under the control of the mouse HPRT promoter and embedded in its natural CpG-rich island, overcame this position effect and was stably expressed when targeted to the identical site in the Lig1 locus. The promoter region of the stably expressed minigene remained unmethylated, while the promoter of the unstably expressed minigene rapidly became fully methylated. The difference in the stability of HPRT minigene expression at the same target locus can be explained in the context of the different lengths of their CpG-rich promoter regions with associated transcription factors and a resulting difference in their susceptibility to DNA methylation, rather than by differences in promoter strength.

Full Text

The Full Text of this article is available as a PDF (219.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adra C. N., Boer P. H., McBurney M. W. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene. 1987;60(1):65–74. doi: 10.1016/0378-1119(87)90214-9. [DOI] [PubMed] [Google Scholar]
  2. Askew G. R., Doetschman T., Lingrel J. B. Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol Cell Biol. 1993 Jul;13(7):4115–4124. doi: 10.1128/mcb.13.7.4115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentley D., Selfridge J., Millar J. K., Samuel K., Hole N., Ansell J. D., Melton D. W. DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability. Nat Genet. 1996 Aug;13(4):489–491. doi: 10.1038/ng0896-489. [DOI] [PubMed] [Google Scholar]
  4. Bonifer C., Huber M. C., Jägle U., Faust N., Sippel A. E. Prerequisites for tissue specific and position independent expression of a gene locus in transgenic mice. J Mol Med (Berl) 1996 Nov;74(11):663–671. doi: 10.1007/s001090050070. [DOI] [PubMed] [Google Scholar]
  5. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  6. Clark A. J., Bissinger P., Bullock D. W., Damak S., Wallace R., Whitelaw C. B., Yull F. Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev. 1994;6(5):589–598. doi: 10.1071/rd9940589. [DOI] [PubMed] [Google Scholar]
  7. Cross S. H., Bird A. P. CpG islands and genes. Curr Opin Genet Dev. 1995 Jun;5(3):309–314. doi: 10.1016/0959-437x(95)80044-1. [DOI] [PubMed] [Google Scholar]
  8. Dillon N., Grosveld F. Chromatin domains as potential units of eukaryotic gene function. Curr Opin Genet Dev. 1994 Apr;4(2):260–264. doi: 10.1016/s0959-437x(05)80053-x. [DOI] [PubMed] [Google Scholar]
  9. Gariboldi M., Montecucco A., Columbano A., Ledda-Columbano G. M., Savini E., Manenti G., Pierotti M. A., Dragani T. A. Genetic mapping and expression analysis of the murine DNA ligase I gene. Mol Carcinog. 1995 Oct;14(2):71–74. doi: 10.1002/mc.2940140202. [DOI] [PubMed] [Google Scholar]
  10. Hasty P., Ramírez-Solis R., Krumlauf R., Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature. 1991 Mar 21;350(6315):243–246. doi: 10.1038/350243a0. [DOI] [PubMed] [Google Scholar]
  11. Hooper M., Hardy K., Handyside A., Hunter S., Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987 Mar 19;326(6110):292–295. doi: 10.1038/326292a0. [DOI] [PubMed] [Google Scholar]
  12. Jiralerspong S., Patel P. I. Regulation of the hypoxanthine phosphoribosyltransferase gene: in vitro and in vivo approaches. Proc Soc Exp Biol Med. 1996 Jun;212(2):116–127. doi: 10.3181/00379727-212-43998. [DOI] [PubMed] [Google Scholar]
  13. Konecki D. S., Brennand J., Fuscoe J. C., Caskey C. T., Chinault A. C. Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res. 1982 Nov 11;10(21):6763–6775. doi: 10.1093/nar/10.21.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  15. Macleod D., Charlton J., Mullins J., Bird A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. doi: 10.1101/gad.8.19.2282. [DOI] [PubMed] [Google Scholar]
  16. Magin T. M., McEwan C., Milne M., Pow A. M., Selfridge J., Melton D. W. A position- and orientation-dependent element in the first intron is required for expression of the mouse hprt gene in embryonic stem cells. Gene. 1992 Dec 15;122(2):289–296. doi: 10.1016/0378-1119(92)90217-d. [DOI] [PubMed] [Google Scholar]
  17. Magin T. M., McWhir J., Melton D. W. A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res. 1992 Jul 25;20(14):3795–3796. doi: 10.1093/nar/20.14.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McBurney M. W., Sutherland L. C., Adra C. N., Leclair B., Rudnicki M. A., Jardine K. The mouse Pgk-1 gene promoter contains an upstream activator sequence. Nucleic Acids Res. 1991 Oct 25;19(20):5755–5761. doi: 10.1093/nar/19.20.5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Melton D. W., Konecki D. S., Brennand J., Caskey C. T. Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2147–2151. doi: 10.1073/pnas.81.7.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Melton D. W., McEwan C., McKie A. B., Reid A. M. Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X-chromosome linked housekeeping gene. Cell. 1986 Jan 31;44(2):319–328. doi: 10.1016/0092-8674(86)90766-x. [DOI] [PubMed] [Google Scholar]
  21. Minty A. J., Caravatti M., Robert B., Cohen A., Daubas P., Weydert A., Gros F., Buckingham M. E. Mouse actin messenger RNAs. Construction and characterization of a recombinant plasmid molecule containing a complementary DNA transcript of mouse alpha-actin mRNA. J Biol Chem. 1981 Jan 25;256(2):1008–1014. [PubMed] [Google Scholar]
  22. Moore R. C., Redhead N. J., Selfridge J., Hope J., Manson J. C., Melton D. W. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations. Biotechnology (N Y) 1995 Sep;13(9):999–1004. doi: 10.1038/nbt0995-999. [DOI] [PubMed] [Google Scholar]
  23. Olson E. N., Arnold H. H., Rigby P. W., Wold B. J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell. 1996 Apr 5;85(1):1–4. doi: 10.1016/s0092-8674(00)81073-9. [DOI] [PubMed] [Google Scholar]
  24. Pfeifer G. P., Riggs A. D. Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR. Genes Dev. 1991 Jun;5(6):1102–1113. doi: 10.1101/gad.5.6.1102. [DOI] [PubMed] [Google Scholar]
  25. Porter R. M., Leitgeb S., Melton D. W., Swensson O., Eady R. A., Magin T. M. Gene targeting at the mouse cytokeratin 10 locus: severe skin fragility and changes of cytokeratin expression in the epidermis. J Cell Biol. 1996 Mar;132(5):925–936. doi: 10.1083/jcb.132.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Redhead N. J., Selfridge J., Wu C. L., Melton D. W. Mice with adenine phosphoribosyltransferase deficiency develop fatal 2,8-dihydroxyadenine lithiasis. Hum Gene Ther. 1996 Aug 20;7(13):1491–1502. doi: 10.1089/hum.1996.7.13-1491. [DOI] [PubMed] [Google Scholar]
  27. Reid L. H., Gregg R. G., Smithies O., Koller B. H. Regulatory elements in the introns of the human HPRT gene are necessary for its expression in embryonic stem cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4299–4303. doi: 10.1073/pnas.87.11.4299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Singer-Sam J., LeBon J. M., Tanguay R. L., Riggs A. D. A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res. 1990 Feb 11;18(3):687–687. doi: 10.1093/nar/18.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stacey A., Schnieke A., McWhir J., Cooper J., Colman A., Melton D. W. Use of double-replacement gene targeting to replace the murine alpha-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol Cell Biol. 1994 Feb;14(2):1009–1016. doi: 10.1128/mcb.14.2.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thompson S., Clarke A. R., Pow A. M., Hooper M. L., Melton D. W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 1989 Jan 27;56(2):313–321. doi: 10.1016/0092-8674(89)90905-7. [DOI] [PubMed] [Google Scholar]
  31. Wu H., Liu X., Jaenisch R. Double replacement: strategy for efficient introduction of subtle mutations into the murine Col1a-1 gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2819–2823. doi: 10.1073/pnas.91.7.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES