Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Apr;105(Suppl 3):565–569. doi: 10.1289/ehp.97105s3565

Hormone-associated cancer: mechanistic similarities between human breast cancer and estrogen-induced kidney carcinogenesis in hamsters.

J G Liehr 1
PMCID: PMC1469895  PMID: 9167996

Abstract

Estrogens are risk factors for human breast cancer and induce kidney tumors in Syrian hamsters. Mechanistic features of the estrogen-induced hamster kidney tumor model have been compared with corresponding aspects of human breast cancer to gain insight into the mechanism of human mammary oncogenesis. Shared characteristics point to a mechanism of metabolic activation of steroidal estrogens to 4-hydroxylated catechol metabolites that may undergo metabolic redox cycling, a mechanism of generation of reactive free radicals. Tumors may arise in cells genetically altered by various types of estrogen-induced DNA damage. At the same time, these altered cells may respond to estrogen receptor-mediated stimuli in support of cell transformation and growth.

Full text

PDF
565

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adlercreutz H., Gorbach S. L., Goldin B. R., Woods M. N., Dwyer J. T., Hämäläinen E. Estrogen metabolism and excretion in Oriental and Caucasian women. J Natl Cancer Inst. 1994 Jul 20;86(14):1076–1082. doi: 10.1093/jnci/86.14.1076. [DOI] [PubMed] [Google Scholar]
  2. Ashburn S. P., Han X., Liehr J. G. Microsomal hydroxylation of 2- and 4-fluoroestradiol to catechol metabolites and their conversion to methyl ethers: catechol estrogens as possible mediators of hormonal carcinogenesis. Mol Pharmacol. 1993 Apr;43(4):534–541. [PubMed] [Google Scholar]
  3. Barnea E. R., MacLusky N. J., Naftolin F. Kinetics of catechol estrogen-estrogen receptor dissociation: a possible factor underlying differences in catechol estrogen biological activity. Steroids. 1983 May;41(5):643–656. doi: 10.1016/0039-128x(83)90030-2. [DOI] [PubMed] [Google Scholar]
  4. Boyd N. F., McGuire V. The possible role of lipid peroxidation in breast cancer risk. Free Radic Biol Med. 1991;10(3-4):185–190. doi: 10.1016/0891-5849(91)90074-d. [DOI] [PubMed] [Google Scholar]
  5. Bui Q. D., Weisz J. Monooxygenase mediating catecholestrogen formation by rat anterior pituitary is an estrogen-4-hydroxylase. Endocrinology. 1989 Feb;124(2):1085–1087. doi: 10.1210/endo-124-2-1085. [DOI] [PubMed] [Google Scholar]
  6. CLIFTON K. H., MEYER R. K. Mechanism of anterior pituitary tumor induction by estrogen. Anat Rec. 1956 May;125(1):65–81. doi: 10.1002/ar.1091250106. [DOI] [PubMed] [Google Scholar]
  7. Clarke C. L., Sutherland R. L. Progestin regulation of cellular proliferation. Endocr Rev. 1990 May;11(2):266–301. doi: 10.1210/edrv-11-2-266. [DOI] [PubMed] [Google Scholar]
  8. Colditz G. A., Hankinson S. E., Hunter D. J., Willett W. C., Manson J. E., Stampfer M. J., Hennekens C., Rosner B., Speizer F. E. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med. 1995 Jun 15;332(24):1589–1593. doi: 10.1056/NEJM199506153322401. [DOI] [PubMed] [Google Scholar]
  9. Dwivedy I., Devanesan P., Cremonesi P., Rogan E., Cavalieri E. Synthesis and characterization of estrogen 2,3- and 3,4-quinones. Comparison of DNA adducts formed by the quinones versus horseradish peroxidase-activated catechol estrogens. Chem Res Toxicol. 1992 Nov-Dec;5(6):828–833. doi: 10.1021/tx00030a016. [DOI] [PubMed] [Google Scholar]
  10. Greenwald P., Caputo T. A., Wolfgang P. E. Endometrial cancer after menopausal use of estrogens. Obstet Gynecol. 1977 Aug;50(2):239–243. [PubMed] [Google Scholar]
  11. Han X., Liehr J. G. DNA single-strand breaks in kidneys of Syrian hamsters treated with steroidal estrogens: hormone-induced free radical damage preceding renal malignancy. Carcinogenesis. 1994 May;15(5):997–1000. doi: 10.1093/carcin/15.5.997. [DOI] [PubMed] [Google Scholar]
  12. Han X., Liehr J. G. Microsome-mediated 8-hydroxylation of guanine bases of DNA by steroid estrogens: correlation of DNA damage by free radicals with metabolic activation to quinones. Carcinogenesis. 1995 Oct;16(10):2571–2574. doi: 10.1093/carcin/16.10.2571. [DOI] [PubMed] [Google Scholar]
  13. Henderson B. E., Ross R. K., Pike M. C. Hormonal chemoprevention of cancer in women. Science. 1993 Jan 29;259(5095):633–638. doi: 10.1126/science.8381558. [DOI] [PubMed] [Google Scholar]
  14. Henderson B. E., Ross R. K., Pike M. C. Toward the primary prevention of cancer. Science. 1991 Nov 22;254(5035):1131–1138. doi: 10.1126/science.1957166. [DOI] [PubMed] [Google Scholar]
  15. Howe G. R., Hirohata T., Hislop T. G., Iscovich J. M., Yuan J. M., Katsouyanni K., Lubin F., Marubini E., Modan B., Rohan T. Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J Natl Cancer Inst. 1990 Apr 4;82(7):561–569. doi: 10.1093/jnci/82.7.561. [DOI] [PubMed] [Google Scholar]
  16. Hulka B. S., Liu E. T., Lininger R. A. Steroid hormones and risk of breast cancer. Cancer. 1994 Aug 1;74(3 Suppl):1111–1124. doi: 10.1002/1097-0142(19940801)74:3+<1111::aid-cncr2820741520>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  17. Huseby R. A. Demonstration of a direct carcinogenic effect of estradiol on Leydig cells of the mouse. Cancer Res. 1980 Apr;40(4):1006–1013. [PubMed] [Google Scholar]
  18. Jones L. A., Pacillas-Verjan R. Transplantability and sex steroid hormone responsiveness of cervicovaginal tumors derived from female BALB/cCrgl mice neonatally treated with ovarian steroids. Cancer Res. 1979 Jul;39(7 Pt 1):2591–2594. [PubMed] [Google Scholar]
  19. KIRKMAN H. Estrogen-induced tumors of the kidney. III. Growth characteristics in the Syrian hamster. Natl Cancer Inst Monogr. 1959 Dec;1:1–57. [PubMed] [Google Scholar]
  20. Key T. J., Pike M. C. The dose-effect relationship between 'unopposed' oestrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. Br J Cancer. 1988 Feb;57(2):205–212. doi: 10.1038/bjc.1988.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Key T. J., Pike M. C. The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur J Cancer Clin Oncol. 1988 Jan;24(1):29–43. doi: 10.1016/0277-5379(88)90173-3. [DOI] [PubMed] [Google Scholar]
  22. Leav I., Merk F. B., Kwan P. W., Ho S. M. Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate. 1989;15(1):23–40. doi: 10.1002/pros.2990150104. [DOI] [PubMed] [Google Scholar]
  23. Li Y., Trush M. A., Yager J. D. DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol. Carcinogenesis. 1994 Jul;15(7):1421–1427. doi: 10.1093/carcin/15.7.1421. [DOI] [PubMed] [Google Scholar]
  24. Liehr J. G., Fang W. F., Sirbasku D. A., Ari-Ulubelen A. Carcinogenicity of catechol estrogens in Syrian hamsters. J Steroid Biochem. 1986 Jan;24(1):353–356. doi: 10.1016/0022-4731(86)90080-4. [DOI] [PubMed] [Google Scholar]
  25. Liehr J. G., Purdy R. H., Baran J. S., Nutting E. F., Colton F., Randerath E., Randerath K. Correlation of aromatic hydroxylation of 11 beta-substituted estrogens with morphological transformation in vitro but not with in vivo tumor induction by these hormones. Cancer Res. 1987 May 15;47(10):2583–2588. [PubMed] [Google Scholar]
  26. Liehr J. G., Ricci M. J. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3294–3296. doi: 10.1073/pnas.93.8.3294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liehr J. G., Ulubelen A. A., Strobel H. W. Cytochrome P-450-mediated redox cycling of estrogens. J Biol Chem. 1986 Dec 25;261(36):16865–16870. [PubMed] [Google Scholar]
  28. Liehr J. G., Wheeler W. J. Inhibition of estrogen-induced renal carcinoma in Syrian hamsters by vitamin C. Cancer Res. 1983 Oct;43(10):4638–4642. [PubMed] [Google Scholar]
  29. MacMahon B. Risk factors for endometrial cancer. Gynecol Oncol. 1974 Aug;2(2-3):122–129. doi: 10.1016/0090-8258(74)90003-1. [DOI] [PubMed] [Google Scholar]
  30. Malins D. C., Holmes E. H., Polissar N. L., Gunselman S. J. The etiology of breast cancer. Characteristic alteration in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer. 1993 May 15;71(10):3036–3043. doi: 10.1002/1097-0142(19930515)71:10<3036::aid-cncr2820711025>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  31. Martucci C. P., Fishman J. P450 enzymes of estrogen metabolism. Pharmacol Ther. 1993 Feb-Mar;57(2-3):237–257. doi: 10.1016/0163-7258(93)90057-k. [DOI] [PubMed] [Google Scholar]
  32. Newbold R. R., Bullock B. C., McLachlan J. A. Uterine adenocarcinoma in mice following developmental treatment with estrogens: a model for hormonal carcinogenesis. Cancer Res. 1990 Dec 1;50(23):7677–7681. [PubMed] [Google Scholar]
  33. Nutter L. M., Ngo E. O., Abul-Hajj Y. J. Characterization of DNA damage induced by 3,4-estrone-o-quinone in human cells. J Biol Chem. 1991 Sep 5;266(25):16380–16386. [PubMed] [Google Scholar]
  34. Oberley T. D., Lauchner L. J., Pugh T. D., Gonzalez A., Goldfarb S., Li S. A., Li J. J. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2107–2111. doi: 10.1073/pnas.86.6.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Paria B. C., Chakraborty C., Dey S. K. Catechol estrogen formation in the mouse uterus and its role in implantation. Mol Cell Endocrinol. 1990 Feb 12;69(1):25–32. doi: 10.1016/0303-7207(90)90085-m. [DOI] [PubMed] [Google Scholar]
  36. Roy D., Liehr J. G. Temporary decrease in renal quinone reductase activity induced by chronic administration of estradiol to male Syrian hamsters. Increased superoxide formation by redox cycling of estrogen. J Biol Chem. 1988 Mar 15;263(8):3646–3651. [PubMed] [Google Scholar]
  37. Savas U., Bhattacharyya K. K., Christou M., Alexander D. L., Jefcoate C. R. Mouse cytochrome P-450EF, representative of a new 1B subfamily of cytochrome P-450s. Cloning, sequence determination, and tissue expression. J Biol Chem. 1994 May 27;269(21):14905–14911. [PubMed] [Google Scholar]
  38. Sirbasku D. A., Kirkland W. L. Control of cell growth. IV. Growth properties of a new cell line established from an estrogen-dependent kidney tumor of the Syrian hamster. Endocrinology. 1976 May;98(5):1260–1272. doi: 10.1210/endo-98-5-1260. [DOI] [PubMed] [Google Scholar]
  39. Spink D. C., Hayes C. L., Young N. R., Christou M., Sutter T. R., Jefcoate C. R., Gierthy J. F. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17 beta-estradiol 4-hydroxylase. J Steroid Biochem Mol Biol. 1994 Dec;51(5-6):251–258. doi: 10.1016/0960-0760(94)90037-x. [DOI] [PubMed] [Google Scholar]
  40. Sutter T. R., Tang Y. M., Hayes C. L., Wo Y. Y., Jabs E. W., Li X., Yin H., Cody C. W., Greenlee W. F. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem. 1994 May 6;269(18):13092–13099. [PubMed] [Google Scholar]
  41. Toniolo P. G., Levitz M., Zeleniuch-Jacquotte A., Banerjee S., Koenig K. L., Shore R. E., Strax P., Pasternack B. S. A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J Natl Cancer Inst. 1995 Feb 1;87(3):190–197. doi: 10.1093/jnci/87.3.190. [DOI] [PubMed] [Google Scholar]
  42. Walker B. E., Kurth L. A. Pituitary tumors in mice exposed prenatally to diethylstilbestrol. Cancer Res. 1993 Apr 1;53(7):1546–1549. [PubMed] [Google Scholar]
  43. Wang M. Y., Liehr J. G. Identification of fatty acid hydroperoxide cofactors in the cytochrome P450-mediated oxidation of estrogens to quinone metabolites. Role and balance of lipid peroxides during estrogen-induced carcinogenesis. J Biol Chem. 1994 Jan 7;269(1):284–291. [PubMed] [Google Scholar]
  44. Wang M. Y., Liehr J. G. Lipid hydroperoxide-induced endogenous DNA adducts in hamsters: possible mechanism of lipid hydroperoxide-mediated carcinogenesis. Arch Biochem Biophys. 1995 Jan 10;316(1):38–46. doi: 10.1006/abbi.1995.1007. [DOI] [PubMed] [Google Scholar]
  45. Wang M., Dhingra K., Hittelman W. N., Liehr J. G., de Andrade M., Li D. Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Cancer Epidemiol Biomarkers Prev. 1996 Sep;5(9):705–710. [PubMed] [Google Scholar]
  46. Weisz J., Bui Q. D., Roy D., Liehr J. G. Elevated 4-hydroxylation of estradiol by hamster kidney microsomes: a potential pathway of metabolic activation of estrogens. Endocrinology. 1992 Aug;131(2):655–661. doi: 10.1210/endo.131.2.1386303. [DOI] [PubMed] [Google Scholar]
  47. Yager J. D., Liehr J. G. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 1996;36:203–232. doi: 10.1146/annurev.pa.36.040196.001223. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES