Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Apr;105(Suppl 3):655–663. doi: 10.1289/ehp.97105s3655

Predicting health effects of exposures to compounds with estrogenic activity: methodological issues.

R Rudel 1
PMCID: PMC1469898  PMID: 9168010

Abstract

Many substances are active in in vitro tests for estrogenic activity, but data from multigenerational and other toxicity studies are not available for many of those substances. Controversy has arisen, therefore, concerning the likelihood of adverse health effects. Based on a toxic equivalence factor risk assessment approach, some researchers have concluded that exposure to environmental estrogens is not associated with estrogen receptor (ER)-mediated health effects. Their rationale cites the low potency of these compounds in in vitro assays relative to estradiol, and the widespread exposure to pharmaceutical, endogenous, and dietary estrogens. This reasoning relies on two assumptions: that the relative estrogenic potency in in vitro assays is predictive of the relative potency for the most sensitive in vivo estrogenic effect; and that all estrogens act via the same mechanism to produce the most sensitive in vivo estrogenic effect. Experimental data reviewed here suggest that these assumptions may be inappropriate because diversity in both mechanism and effect exists for estrogenic compounds. Examples include variations in ER-ligand binding to estrogen response elements, time course of nuclear ER accumulation, patterns of gene activation, and other mechanistic characteristics that are not reflected in many in vitro assays, but may have significance for ER-mediated in vivo effects. In light of these data, this report identifies emerging methodological issues in risk assessment for estrogenic compounds: the need to address differences in in vivo end points of concern and the associated mechanisms; pharmacokinetics; the crucial role of timing and duration of exposure; interactions; and non-ER-mediated activities of estrogenic compounds.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. B. Enzymatic regulation of estradiol-17 beta concentrations in human breast cancer cells. Breast Cancer Res Treat. 1992 Mar;20(3):145–154. doi: 10.1007/BF01834620. [DOI] [PubMed] [Google Scholar]
  2. Adams J. B., Seymour-Munn K. Estrogen receptor and C19-5-ene-steroid concentrations in the nuclear fraction from human breast carcinoma tissue. J Steroid Biochem Mol Biol. 1992 Nov;43(6):499–505. doi: 10.1016/0960-0760(92)90236-c. [DOI] [PubMed] [Google Scholar]
  3. Adams J. B., Vrahimis R., Phillips N. Regulation of estrogen sulfotransferase by estrogen in MCF-7 human mammary cancer cells. Breast Cancer Res Treat. 1992;22(2):157–161. doi: 10.1007/BF01833346. [DOI] [PubMed] [Google Scholar]
  4. Adlercreutz H., Höckerstedt K., Bannwart C., Bloigu S., Hämäläinen E., Fotsis T., Ollus A. Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem. 1987;27(4-6):1135–1144. doi: 10.1016/0022-4731(87)90200-7. [DOI] [PubMed] [Google Scholar]
  5. Arnold S. F., Klotz D. M., Collins B. M., Vonier P. M., Guillette L. J., Jr, McLachlan J. A. Synergistic activation of estrogen receptor with combinations of environmental chemicals. Science. 1996 Jun 7;272(5267):1489–1492. doi: 10.1126/science.272.5267.1489. [DOI] [PubMed] [Google Scholar]
  6. Ashby J. Assessing chemicals for estrogenic/hormone-disrupting properties: lessons from carcinogenicity assessment. Environ Health Perspect. 1996 Feb;104(2):132–134. doi: 10.1289/ehp.104-1469280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradlow H. L., Davis D. L., Lin G., Sepkovic D., Tiwari R. Effects of pesticides on the ratio of 16 alpha/2-hydroxyestrone: a biologic marker of breast cancer risk. Environ Health Perspect. 1995 Oct;103 (Suppl 7):147–150. doi: 10.1289/ehp.95103s7147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradlow H. L., Michnovicz J., Telang N. T., Osborne M. P. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis. 1991 Sep;12(9):1571–1574. doi: 10.1093/carcin/12.9.1571. [DOI] [PubMed] [Google Scholar]
  9. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davis D. L., Bradlow H. L., Wolff M., Woodruff T., Hoel D. G., Anton-Culver H. Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Health Perspect. 1993 Oct;101(5):372–377. doi: 10.1289/ehp.93101372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeVito M. J., Thomas T., Martin E., Umbreit T. H., Gallo M. A. Antiestrogenic action of 2,3,7,8-tetrachlorodibenzo-p-dioxin: tissue-specific regulation of estrogen receptor in CD1 mice. Toxicol Appl Pharmacol. 1992 Apr;113(2):284–292. doi: 10.1016/0041-008x(92)90126-d. [DOI] [PubMed] [Google Scholar]
  12. Feldman D., Krishnan A. Estrogens in unexpected places: possible implications for researchers and consumers. Environ Health Perspect. 1995 Oct;103 (Suppl 7):129–133. doi: 10.1289/ehp.95103s7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Folman Y., Pope G. S. Effect of norethisterone acetate, dimethylstilboestrol, genistein and coumestrol on uptake of [3H]oestradiol by uterus, vagina and skeletal muscle of immature mice. J Endocrinol. 1969 Jun;44(2):213–218. doi: 10.1677/joe.0.0440213. [DOI] [PubMed] [Google Scholar]
  14. Folman Y., Pope G. S. The interaction in the immature mouse of potent oestrogens with coumestrol, genistein and other utero-vaginotrophic compounds of low potency. J Endocrinol. 1966 Feb;34(2):215–225. doi: 10.1677/joe.0.0340215. [DOI] [PubMed] [Google Scholar]
  15. Fuller P. J. The steroid receptor superfamily: mechanisms of diversity. FASEB J. 1991 Dec;5(15):3092–3099. doi: 10.1096/fasebj.5.15.1743440. [DOI] [PubMed] [Google Scholar]
  16. Goldey E. S., Kehn L. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol. 1995 Nov;135(1):77–88. doi: 10.1006/taap.1995.1210. [DOI] [PubMed] [Google Scholar]
  17. Goldin B. R., Adlercreutz H., Gorbach S. L., Warram J. H., Dwyer J. T., Swenson L., Woods M. N. Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. N Engl J Med. 1982 Dec 16;307(25):1542–1547. doi: 10.1056/NEJM198212163072502. [DOI] [PubMed] [Google Scholar]
  18. Hammond B., Katzenellenbogen B. S., Krauthammer N., McConnell J. Estrogenic activity of the insecticide chlordecone (Kepone) and interaction with uterine estrogen receptors. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6641–6645. doi: 10.1073/pnas.76.12.6641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ignar-Trowbridge D. M., Pimentel M., Teng C. T., Korach K. S., McLachlan J. A. Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ Health Perspect. 1995 Oct;103 (Suppl 7):35–38. doi: 10.1289/ehp.95103s735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jobling S., Reynolds T., White R., Parker M. G., Sumpter J. P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect. 1995 Jun;103(6):582–587. doi: 10.1289/ehp.95103582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jordan V. C., Tate A. C., Lyman S. D., Gosden B., Wolf M. F., Bain R. R., Welshons W. V. Rat uterine growth and induction of progesterone receptor without estrogen receptor translocation. Endocrinology. 1985 May;116(5):1845–1857. doi: 10.1210/endo-116-5-1845. [DOI] [PubMed] [Google Scholar]
  22. Kang K. S., Wilson M. R., Hayashi T., Chang C. C., Trosko J. E. Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures. Environ Health Perspect. 1996 Feb;104(2):192–200. doi: 10.1289/ehp.96104192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Katzenellenbogen B. S., Iwamoto H. S., Heiman D. F., Lan N. C., Katzenellenbogen J. A. Stilbestrols and stilbestrol derivatives: estrogenic potency and temporal relationships between estrogen receptor binding and uterine growth. Mol Cell Endocrinol. 1978 Feb-Mar;10(1):103–113. doi: 10.1016/0303-7207(78)90063-1. [DOI] [PubMed] [Google Scholar]
  24. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  25. Korach K. S., Fox-Davies C., Quarmby V. E., Swaisgood M. H. Diethylstilbestrol metabolites and analogs. Biochemical probes for differential stimulation of uterine estrogen responses. J Biol Chem. 1985 Dec 15;260(29):15420–15426. [PubMed] [Google Scholar]
  26. Korach K. S., McLachlan J. A. Techniques for detection of estrogenicity. Environ Health Perspect. 1995 Oct;103 (Suppl 7):5–8. doi: 10.1289/ehp.95103s75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Korach K. S., Metzler M., McLachlan J. A. Diethylstilbestrol metabolites and analogs. New probes for the study of hormone action. J Biol Chem. 1979 Sep 25;254(18):8963–8968. [PubMed] [Google Scholar]
  28. LeBlanc G. A. Are environmental sentinels signaling? Environ Health Perspect. 1995 Oct;103(10):888–890. doi: 10.1289/ehp.95103888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Levy J. R., Faber K. A., Ayyash L., Hughes C. L., Jr The effect of prenatal exposure to the phytoestrogen genistein on sexual differentiation in rats. Proc Soc Exp Biol Med. 1995 Jan;208(1):60–66. doi: 10.3181/00379727-208-43832. [DOI] [PubMed] [Google Scholar]
  30. Markaverich B. M., Roberts R. R., Alejandro M., Clark J. H. The effect of low dose continuous exposure to estradiol on the estrogen receptor (type I) and nuclear type II sites. Endocrinology. 1984 Mar;114(3):814–820. doi: 10.1210/endo-114-3-814. [DOI] [PubMed] [Google Scholar]
  31. Markaverich B. M., Webb B., Densmore C. L., Gregory R. R. Effects of coumestrol on estrogen receptor function and uterine growth in ovariectomized rats. Environ Health Perspect. 1995 Jun;103(6):574–581. doi: 10.1289/ehp.95103574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martin P. M., Horwitz K. B., Ryan D. S., McGuire W. L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology. 1978 Nov;103(5):1860–1867. doi: 10.1210/endo-103-5-1860. [DOI] [PubMed] [Google Scholar]
  33. McLachlan J. A. Functional toxicology: a new approach to detect biologically active xenobiotics. Environ Health Perspect. 1993 Oct;101(5):386–387. doi: 10.1289/ehp.93101386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McLachlan J. A., Korach K. S. Symposium on estrogens in the environment, III. Environ Health Perspect. 1995 Oct;103 (Suppl 7):3–4. doi: 10.1289/ehp.95103s73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Medlock K. L., Forrester T. M., Sheehan D. M. Short-term effects of physiological and pharmacological doses of estradiol on estrogen receptor and uterine growth. J Recept Res. 1991;11(5):743–756. doi: 10.3109/10799899109064677. [DOI] [PubMed] [Google Scholar]
  36. Medlock K. L., Lyttle C. R., Kelepouris N., Newman E. D., Sheehan D. M. Estradiol down-regulation of the rat uterine estrogen receptor. Proc Soc Exp Biol Med. 1991 Mar;196(3):293–300. doi: 10.3181/00379727-196-43191. [DOI] [PubMed] [Google Scholar]
  37. Metzler M., Pfeiffer E. Effects of estrogens on microtubule polymerization in vitro: correlation with estrogenicity. Environ Health Perspect. 1995 Oct;103 (Suppl 7):21–22. doi: 10.1289/ehp.95103s721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Miller W. R. Oestrogens and breast cancer: biological considerations. Br Med Bull. 1991 Apr;47(2):470–483. doi: 10.1093/oxfordjournals.bmb.a072485. [DOI] [PubMed] [Google Scholar]
  39. Mäkelä S. I., Pylkkänen L. H., Santti R. S., Adlercreutz H. Dietary soybean may be antiestrogenic in male mice. J Nutr. 1995 Mar;125(3):437–445. doi: 10.1093/jn/125.3.437. [DOI] [PubMed] [Google Scholar]
  40. Mäkelä S., Poutanen M., Lehtimäki J., Kostian M. L., Santti R., Vihko R. Estrogen-specific 17 beta-hydroxysteroid oxidoreductase type 1 (E.C. 1.1.1.62) as a possible target for the action of phytoestrogens. Proc Soc Exp Biol Med. 1995 Jan;208(1):51–59. doi: 10.3181/00379727-208-43831. [DOI] [PubMed] [Google Scholar]
  41. Mäkelä S., Santti R., Salo L., McLachlan J. A. Phytoestrogens are partial estrogen agonists in the adult male mouse. Environ Health Perspect. 1995 Oct;103 (Suppl 7):123–127. doi: 10.1289/ehp.103-1518873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Osborne M. P., Bradlow H. L., Wong G. Y., Telang N. T. Upregulation of estradiol C16 alpha-hydroxylation in human breast tissue: a potential biomarker of breast cancer risk. J Natl Cancer Inst. 1993 Dec 1;85(23):1917–1920. doi: 10.1093/jnci/85.23.1917. [DOI] [PubMed] [Google Scholar]
  43. Robison A. K., Stancel G. M. The estrogenic activity of DDT: correlation of estrogenic effect with nuclear level of estrogen receptor. Life Sci. 1982 Nov 29;31(22):2479–2484. doi: 10.1016/0024-3205(82)90753-6. [DOI] [PubMed] [Google Scholar]
  44. Safe S. H. Environmental and dietary estrogens and human health: is there a problem? Environ Health Perspect. 1995 Apr;103(4):346–351. doi: 10.1289/ehp.95103346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Safe S., Astroff B., Harris M., Zacharewski T., Dickerson R., Romkes M., Biegel L. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds as antioestrogens: characterization and mechanism of action. Pharmacol Toxicol. 1991 Dec;69(6):400–409. doi: 10.1111/j.1600-0773.1991.tb01321.x. [DOI] [PubMed] [Google Scholar]
  46. Smith E. R., Quinn M. M. Uterotropic action in rats of amsonic acid and three of its synthetic precursors. J Toxicol Environ Health. 1992 May;36(1):13–25. doi: 10.1080/15287399209531620. [DOI] [PubMed] [Google Scholar]
  47. Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stancel G. M., Boettger-Tong H. L., Chiappetta C., Hyder S. M., Kirkland J. L., Murthy L., Loose-Mitchell D. S. Toxicity of endogenous and environmental estrogens: what is the role of elemental interactions? Environ Health Perspect. 1995 Oct;103 (Suppl 7):29–33. doi: 10.1289/ehp.95103s729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. VanderKuur J. A., Wiese T., Brooks S. C. Influence of estrogen structure on nuclear binding and progesterone receptor induction by the receptor complex. Biochemistry. 1993 Jul 13;32(27):7002–7008. doi: 10.1021/bi00078a027. [DOI] [PubMed] [Google Scholar]
  51. Watson C. S., Pappas T. C., Gametchu B. The other estrogen receptor in the plasma membrane: implications for the actions of environmental estrogens. Environ Health Perspect. 1995 Oct;103 (Suppl 7):41–50. doi: 10.1289/ehp.95103s741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Welch R. M., Levin W., Conney A. H. Estrogenic action of DDT and its analogs. Toxicol Appl Pharmacol. 1969 Mar;14(2):358–367. doi: 10.1016/0041-008x(69)90117-3. [DOI] [PubMed] [Google Scholar]
  53. Whitten P. L., Russell E., Naftolin F. Effects of a normal, human-concentration, phytoestrogen diet on rat uterine growth. Steroids. 1992 Mar;57(3):98–106. doi: 10.1016/0039-128x(92)90066-i. [DOI] [PubMed] [Google Scholar]
  54. Whitten P. L., Russell E., Naftolin F. Influence of phytoestrogen diets on estradiol action in the rat uterus. Steroids. 1994 Jul;59(7):443–449. doi: 10.1016/0039-128x(94)90014-0. [DOI] [PubMed] [Google Scholar]
  55. Wolff M. S. Environmental estrogens. Environ Health Perspect. 1995 Sep;103(9):784–785. doi: 10.1289/ehp.95103784a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zhu B. T., Liehr J. G. Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicol Appl Pharmacol. 1994 Mar;125(1):149–158. doi: 10.1006/taap.1994.1059. [DOI] [PubMed] [Google Scholar]
  57. vom Saal F. S., Nagel S. C., Palanza P., Boechler M., Parmigiani S., Welshons W. V. Estrogenic pesticides: binding relative to estradiol in MCF-7 cells and effects of exposure during fetal life on subsequent territorial behaviour in male mice. Toxicol Lett. 1995 May;77(1-3):343–350. doi: 10.1016/0378-4274(95)03316-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES