Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 15;25(20):4123–4131. doi: 10.1093/nar/25.20.4123

Factors influencing the extent and selectivity of alkylation within triplexes by reactive G/A motif oligonucleotides.

J N Lampe 1, I V Kutyavin 1, R Rhinehart 1, M W Reed 1, R B Meyer 1, H B Gamper Jr 1
PMCID: PMC146991  PMID: 9321668

Abstract

G/A motif triplex-forming oligonucleotides (TFOs) complementary to a 21 base pair homopurine/homopyrimidine run were conjugated at one or both ends to chlorambucil. These TFOs were incubated with several synthetic duplexes containing the targeted homopurine run flanked by different sequences. The extent of mono and interstrand cross-linking was compared with the level of binding at equilibrium. Covalent modification took place within a triple-stranded complex and usually occurred at guanine residues in the flanking double-stranded DNA. The efficiency of alkylation was dependent upon the sequence of the flanking duplex, the solution conditions, and the rate of triplex formation relative to the rate of chlorambucil reaction. Self-association of the TFOs as parallel duplexes was demonstrated and this did not interfere with triple strand formation. With an optimal target, cross-linking of the triplex was very efficient when incubation was carried in a physiological buffer supplemented with the triplex selective intercalator coralyne.

Full Text

The Full Text of this article is available as a PDF (263.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cassidy S. A., Strekowski L., Fox K. R. DNA sequence specificity of a naphthylquinoline triple helix-binding ligand. Nucleic Acids Res. 1996 Nov 1;24(21):4133–4138. doi: 10.1093/nar/24.21.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chatterji D. C., Yeager R. L., Gallelli J. F. Kinetics of chlorambucil hydrolysis using high-pressure liquid chromatography. J Pharm Sci. 1982 Jan;71(1):50–54. doi: 10.1002/jps.2600710113. [DOI] [PubMed] [Google Scholar]
  3. Cheng A. J., Van Dyke M. W. Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res. 1993 Dec 11;21(24):5630–5635. doi: 10.1093/nar/21.24.5630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng Y. K., Pettitt B. M. Stabilities of double- and triple-strand helical nucleic acids. Prog Biophys Mol Biol. 1992;58(3):225–257. doi: 10.1016/0079-6107(92)90007-s. [DOI] [PubMed] [Google Scholar]
  5. Colombier C., Lippert B., Leng M. Interstrand cross-linking reaction in triplexes containing a monofunctional transplatin-adduct. Nucleic Acids Res. 1996 Nov 15;24(22):4519–4524. doi: 10.1093/nar/24.22.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  7. Duval-Valentin G., Thuong N. T., Hélène C. Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):504–508. doi: 10.1073/pnas.89.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebbinghaus S. W., Gee J. E., Rodu B., Mayfield C. A., Sanders G., Miller D. M. Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest. 1993 Nov;92(5):2433–2439. doi: 10.1172/JCI116850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Escudé C., Giovannangeli C., Sun J. S., Lloyd D. H., Chen J. K., Gryaznov S. M., Garestier T., Hélène C. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4365–4369. doi: 10.1073/pnas.93.9.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Escudé C., Sun J. S., Nguyen C. H., Bisagni E., Garestier T., Hélène C. Ligand-induced formation of triple helices with antiparallel third strands containing G and T. Biochemistry. 1996 May 7;35(18):5735–5740. doi: 10.1021/bi960120c. [DOI] [PubMed] [Google Scholar]
  11. Gamper H. B., Reed M. W., Cox T., Virosco J. S., Adams A. D., Gall A. A., Scholler J. K., Meyer R. B., Jr Facile preparation of nuclease resistant 3' modified oligodeoxynucleotides. Nucleic Acids Res. 1993 Jan 11;21(1):145–150. doi: 10.1093/nar/21.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giovannangeli C., Perrouault L., Escudé C., Nguyen T., Hélène C. Specific inhibition of in vitro transcription elongation by triplex-forming oligonucleotide-intercalator conjugates targeted to HIV proviral DNA. Biochemistry. 1996 Aug 13;35(32):10539–10548. doi: 10.1021/bi952993x. [DOI] [PubMed] [Google Scholar]
  13. Grigoriev M., Praseuth D., Robin P., Hemar A., Saison-Behmoaras T., Dautry-Varsat A., Thuong N. T., Hélène C., Harel-Bellan A. A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem. 1992 Feb 15;267(5):3389–3395. [PubMed] [Google Scholar]
  14. Gruff E. S., Orgel L. E. An efficient, sequence-specific method for crosslinking complementary oligonucleotides using binuclear platinum complexes. Nucleic Acids Res. 1991 Dec 25;19(24):6849–6854. doi: 10.1093/nar/19.24.6849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee J. S., Johnson D. A., Morgan A. R. Complexes formed by (pyrimidine)n . (purine)n DNAs on lowering the pH are three-stranded. Nucleic Acids Res. 1979 Jul 11;6(9):3073–3091. doi: 10.1093/nar/6.9.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee J. S., Latimer L. J., Hampel K. J. Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes. Biochemistry. 1993 Jun 1;32(21):5591–5597. doi: 10.1021/bi00072a014. [DOI] [PubMed] [Google Scholar]
  17. Maher L. J., 3rd, Dervan P. B., Wold B. Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry. 1992 Jan 14;31(1):70–81. doi: 10.1021/bi00116a012. [DOI] [PubMed] [Google Scholar]
  18. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mirkin S. M., Frank-Kamenetskii M. D. H-DNA and related structures. Annu Rev Biophys Biomol Struct. 1994;23:541–576. doi: 10.1146/annurev.bb.23.060194.002545. [DOI] [PubMed] [Google Scholar]
  20. Nielsen P. E. DNA analogues with nonphosphodiester backbones. Annu Rev Biophys Biomol Struct. 1995;24:167–183. doi: 10.1146/annurev.bb.24.060195.001123. [DOI] [PubMed] [Google Scholar]
  21. Noonberg S. B., François J. C., Garestier T., Hélène C. Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res. 1995 Jun 11;23(11):1956–1963. doi: 10.1093/nar/23.11.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Plum G. E., Pilch D. S., Singleton S. F., Breslauer K. J. Nucleic acid hybridization: triplex stability and energetics. Annu Rev Biophys Biomol Struct. 1995;24:319–350. doi: 10.1146/annurev.bb.24.060195.001535. [DOI] [PubMed] [Google Scholar]
  23. Scaria P. V., Shire S. J., Shafer R. H. Quadruplex structure of d(G3T4G3) stabilized by K+ or Na+ is an asymmetric hairpin dimer. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10336–10340. doi: 10.1073/pnas.89.21.10336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singleton S. F., Dervan P. B. Equilibrium association constants for oligonucleotide-directed triple helix formation at single DNA sites: linkage to cation valence and concentration. Biochemistry. 1993 Dec 7;32(48):13171–13179. doi: 10.1021/bi00211a028. [DOI] [PubMed] [Google Scholar]
  25. Sun J. S., François J. C., Montenay-Garestier T., Saison-Behmoaras T., Roig V., Thuong N. T., Hélène C. Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9198–9202. doi: 10.1073/pnas.86.23.9198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sun J. S., Garestier T., Hélène C. Oligonucleotide directed triple helix formation. Curr Opin Struct Biol. 1996 Jun;6(3):327–333. doi: 10.1016/s0959-440x(96)80051-0. [DOI] [PubMed] [Google Scholar]
  27. Takasugi M., Guendouz A., Chassignol M., Decout J. L., Lhomme J., Thuong N. T., Hélène C. Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5602–5606. doi: 10.1073/pnas.88.13.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takasugi M., Guendouz A., Chassignol M., Decout J. L., Lhomme J., Thuong N. T., Hélène C. Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5602–5606. doi: 10.1073/pnas.88.13.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vlassov V. V., Gaidamakov S. A., Zarytova V. F., Knorre D. G., Levina A. S., Nikonova A. A., Podust L. M., Fedorova O. S. Sequence-specific chemical modification of double-stranded DNA with alkylating oligodeoxyribonucleotide derivatives. Gene. 1988 Dec 10;72(1-2):313–322. doi: 10.1016/0378-1119(88)90158-8. [DOI] [PubMed] [Google Scholar]
  30. Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., Wohlrab F. The chemistry and biology of unusual DNA structures adopted by oligopurine.oligopyrimidine sequences. FASEB J. 1988 Nov;2(14):2939–2949. [PubMed] [Google Scholar]
  31. Young S. L., Krawczyk S. H., Matteucci M. D., Toole J. J. Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10023–10026. doi: 10.1073/pnas.88.22.10023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zimmer C., Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Biol. 1986;47(1):31–112. doi: 10.1016/0079-6107(86)90005-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES