Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 15;25(20):4055–4060. doi: 10.1093/nar/25.20.4055

A conserved core element is functionally important for maize mitochondrial promoter activity in vitro.

A G Caoile 1, D B Stern 1
PMCID: PMC146992  PMID: 9321657

Abstract

We have previously used a homologous in vitro transcription system to define functional elements of the maize mitochondrial atpA promoter. These elements comprise a central domain extending from -7 to +5, relative to the transcription start site, and an upstream domain of 1-3 bp that is purine rich and centered around positions -11 to -12. Within the central domain lies an essential 5 bp core element. These elements are conserved in many mitochondrial promoters, but their functionality has only been tested for atpA. In this study we have introduced mutations into the corresponding elements of two cox3 promoters and show that while the core element is essential for cox3 promoter activity, upstream element mutations have little or no effect. To define the minimal sequence required for in vitro promoter activity a series of short cloned oligonucleotides corresponding to the atpA promoter was used. While some activity was seen with a 14 bp sequence, full activity required 26 bp, suggesting that elements other than the core and upstream region can influence promoter strength. Another series of clones showed that altered spacing between the upstream and core elements of atpA had a significant effect on promoter activity. These results further define important features of the plant mitochondrial transcriptional machinery.

Full Text

The Full Text of this article is available as a PDF (427.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binder S., Brennicke A. Transcription initiation sites in mitochondria of Oenothera berteriana. J Biol Chem. 1993 Apr 15;268(11):7849–7855. [PubMed] [Google Scholar]
  2. Binder S., Hatzack F., Brennicke A. A novel pea mitochondrial in vitro transcription system recognizes homologous and heterologous mRNA and tRNA promoters. J Biol Chem. 1995 Sep 22;270(38):22182–22189. doi: 10.1074/jbc.270.38.22182. [DOI] [PubMed] [Google Scholar]
  3. Binder S., Thalheim C., Brennicke A. Transcription of potato mitochondrial 26S rRNA is initiated at its mature 5' end. Curr Genet. 1994 Nov-Dec;26(5-6):519–523. doi: 10.1007/BF00309943. [DOI] [PubMed] [Google Scholar]
  4. Biswas T. K., Ticho B., Getz G. S. In vitro characterization of the yeast mitochondrial promoter using single-base substitution mutants. J Biol Chem. 1987 Oct 5;262(28):13690–13696. [PubMed] [Google Scholar]
  5. Boege F. Simultaneous presence of terminal adenylyl, cytidylyl, guanylyl, and uridylyl transferase in healthy tomato leaf tissue: separation from RNA-dependent RNA polymerase and characterization of the terminal transferases. Biosci Rep. 1982 Jun;2(6):379–389. doi: 10.1007/BF01119300. [DOI] [PubMed] [Google Scholar]
  6. Bogenhagen D. F. Interaction of mtTFB and mtRNA polymerase at core promoters for transcription of Xenopus laevis mtDNA. J Biol Chem. 1996 May 17;271(20):12036–12041. [PubMed] [Google Scholar]
  7. Brown G. G., Auchincloss A. H., Covello P. S., Gray M. W., Menassa R., Singh M. Characterization of transcription initiation sites on the soybean mitochondrial genome allows identification of a transcription-associated sequence motif. Mol Gen Genet. 1991 Sep;228(3):345–355. doi: 10.1007/BF00260626. [DOI] [PubMed] [Google Scholar]
  8. Cermakian N., Ikeda T. M., Cedergren R., Gray M. W. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res. 1996 Feb 15;24(4):648–654. doi: 10.1093/nar/24.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chapman K. A., Burgess R. R. Construction of bacteriophage T7 late promoters with point mutations and characterization by in vitro transcription properties. Nucleic Acids Res. 1987 Jul 10;15(13):5413–5432. doi: 10.1093/nar/15.13.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chapman K. A., Gunderson S. I., Anello M., Wells R. D., Burgess R. R. Bacteriophage T7 late promoters with point mutations: quantitative footprinting and in vivo expression. Nucleic Acids Res. 1988 May 25;16(10):4511–4524. doi: 10.1093/nar/16.10.4511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Covello P. S., Gray M. W. Sequence analysis of wheat mitochondrial transcripts capped in vitro: definitive identification of transcription initiation sites. Curr Genet. 1991 Aug;20(3):245–251. doi: 10.1007/BF00326239. [DOI] [PubMed] [Google Scholar]
  12. Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  13. Giese A., Thalheim C., Brennicke A., Binder S. Correlation of nonanucleotide motifs with transcript initiation of 18S rRNA genes in mitochondria of pea, potato and Arabidopsis. Mol Gen Genet. 1996 Sep 25;252(4):429–436. doi: 10.1007/BF02173008. [DOI] [PubMed] [Google Scholar]
  14. Hanic-Joyce P. J., Gray M. W. Accurate transcription of a plant mitochondrial gene in vitro. Mol Cell Biol. 1991 Apr;11(4):2035–2039. doi: 10.1128/mcb.11.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hedtke B., Börner T., Weihe A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science. 1997 Aug 8;277(5327):809–811. doi: 10.1126/science.277.5327.809. [DOI] [PubMed] [Google Scholar]
  16. Klement J. F., Moorefield M. B., Jorgensen E., Brown J. E., Risman S., McAllister W. T. Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. 1990 Sep 5;215(1):21–29. doi: 10.1016/s0022-2836(05)80091-9. [DOI] [PubMed] [Google Scholar]
  17. Lang B. F., Burger G., O'Kelly C. J., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Gray M. W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997 May 29;387(6632):493–497. doi: 10.1038/387493a0. [DOI] [PubMed] [Google Scholar]
  18. Lizama L., Holuigue L., Jordana X. Transcription initiation sites for the potato mitochondrial gene coding for subunit 9 of ATP synthase (atp9). FEBS Lett. 1994 Aug 1;349(2):243–248. doi: 10.1016/0014-5793(94)00677-6. [DOI] [PubMed] [Google Scholar]
  19. Masters B. S., Stohl L. L., Clayton D. A. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell. 1987 Oct 9;51(1):89–99. doi: 10.1016/0092-8674(87)90013-4. [DOI] [PubMed] [Google Scholar]
  20. Mulligan R. M., Lau G. T., Walbot V. Numerous transcription initiation sites exist for the maize mitochondrial genes for subunit 9 of the ATP synthase and subunit 3 of cytochrome oxidase. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7998–8002. doi: 10.1073/pnas.85.21.7998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakazono M., Ishikawa M., Yoshida K. T., Tsutsumi N., Hirai A. Multiple initiation sites for transcription of a gene for subunit 1 of F1-ATPase (atp1) in rice mitochondria. Curr Genet. 1996 Apr;29(5):417–422. doi: 10.1007/BF02221508. [DOI] [PubMed] [Google Scholar]
  23. Rapp W. D., Lupold D. S., Mack S., Stern D. B. Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Mol Cell Biol. 1993 Dec;13(12):7232–7238. doi: 10.1128/mcb.13.12.7232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rapp W. D., Stern D. B. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 1992 Mar;11(3):1065–1073. doi: 10.1002/j.1460-2075.1992.tb05145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raskin C. A., Diaz G., Joho K., McAllister W. T. Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. 1992 Nov 20;228(2):506–515. doi: 10.1016/0022-2836(92)90838-b. [DOI] [PubMed] [Google Scholar]
  26. Remacle C., Maréchal-Drouard L. Characterization of the potato mitochondrial transcription unit containing 'native' trnS (GCU), trnF (GAA) and trnP (UGG). Plant Mol Biol. 1996 Feb;30(3):553–563. doi: 10.1007/BF00049331. [DOI] [PubMed] [Google Scholar]
  27. Takanami Y., Fraenkel-Conrat H. Comparative studies on ribonucleic acid dependent RNA polymerases in cucumber mosaic virus infected cucumber and tobacco and uninfected tobacco plants. Biochemistry. 1982 Jun 22;21(13):3161–3167. doi: 10.1021/bi00256a020. [DOI] [PubMed] [Google Scholar]
  28. Tracy R. L., Stern D. B. Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet. 1995 Aug;28(3):205–216. doi: 10.1007/BF00309779. [DOI] [PubMed] [Google Scholar]
  29. Unseld M., Marienfeld J. R., Brandt P., Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997 Jan;15(1):57–61. doi: 10.1038/ng0197-57. [DOI] [PubMed] [Google Scholar]
  30. Weihe A., Hedtke B., Börner T. Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album. Nucleic Acids Res. 1997 Jun 15;25(12):2319–2325. doi: 10.1093/nar/25.12.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES