Abstract
To assess the impact of elevated levels of inorganic mercury in soil and dust and organic mercury in fish, biological monitoring was conducted among Native Americans living next to an inactive mercury mine in Clear Lake, California. Of resident tribal members, 46% (n = 56) participated in biomonitoring. Urine mercury levels are equivalent to background, indicating that soil and dust exposures among study participants are not substantial. The average blood organic mercury level among study participants is 15.6 +/- 8.8 micrograms/l (n = 44), which is higher than levels reported by others among those who do not consume fish (2 micrograms/l). Consistent with results from other studies, a correlation between fish consumption and blood organic mercury is observed (p = 0.03). The margin between observed and established adverse effect levels for adults is examined for blood organic mercury and found to be less than 10-fold for 20% of the study population. Protective public health efforts for the study population and other similarly exposed populations, notably those who consume commercial fish products, are considered.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akesson I., Schutz A., Attewell R., Skerfving S., Glantz P. O. Status of mercury and selenium in dental personnel: impact of amalgam work and own fillings. Arch Environ Health. 1991 Mar-Apr;46(2):102–109. doi: 10.1080/00039896.1991.9937436. [DOI] [PubMed] [Google Scholar]
- Barr R. D., Woodger B. A., Rees P. H. Levels of mercury in urine correlated with the use of skin lightening creams. Am J Clin Pathol. 1973 Jan;59(1):36–40. doi: 10.1093/ajcp/59.1.36. [DOI] [PubMed] [Google Scholar]
- Brune D., Nordberg G. F., Vesterberg O., Gerhardsson L., Wester P. O. A review of normal concentrations of mercury in human blood. Sci Total Environ. 1991 Mar;100(Spec No):235–282. doi: 10.1016/0048-9697(91)90380-w. [DOI] [PubMed] [Google Scholar]
- Cernichiari E., Toribara T. Y., Liang L., Marsh D. O., Berlin M. W., Myers G. J., Cox C., Shamlaye C. F., Choisy O., Davidson P. The biological monitoring of mercury in the Seychelles study. Neurotoxicology. 1995 Winter;16(4):613–628. [PubMed] [Google Scholar]
- Chang S. B., Siew C., Gruninger S. E. Factors affecting blood mercury concentrations in practicing dentists. J Dent Res. 1992 Jan;71(1):66–74. doi: 10.1177/00220345920710011101. [DOI] [PubMed] [Google Scholar]
- Ehrenberg R. L., Vogt R. L., Smith A. B., Brondum J., Brightwell W. S., Hudson P. J., McManus K. P., Hannon W. H., Phipps F. C. Effects of elemental mercury exposure at a thermometer plant. Am J Ind Med. 1991;19(4):495–507. doi: 10.1002/ajim.4700190407. [DOI] [PubMed] [Google Scholar]
- Farley D. Alternatives to regular blood transfusions. FDA Consum. 1994 Jul-Aug;28(6):5–9. [PubMed] [Google Scholar]
- Gilbert S. G., Grant-Webster K. S. Neurobehavioral effects of developmental methylmercury exposure. Environ Health Perspect. 1995 Sep;103 (Suppl 6):135–142. doi: 10.1289/ehp.95103s6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustin M. S., Taylor G. E., Jr, Leonard T. L. High levels of mercury contamination in multiple media of the Carson River drainage basin of Nevada: implications for risk assessment. Environ Health Perspect. 1994 Sep;102(9):772–778. doi: 10.1289/ehp.94102772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson P. J., Vogt R. L., Brondum J., Witherell L., Myers G., Paschal D. C. Elemental mercury exposure among children of thermometer plant workers. Pediatrics. 1987 Jun;79(6):935–938. [PubMed] [Google Scholar]
- Kershaw T. G., Clarkson T. W., Dhahir P. H. The relationship between blood levels and dose of methylmercury in man. Arch Environ Health. 1980 Jan-Feb;35(1):28–36. doi: 10.1080/00039896.1980.10667458. [DOI] [PubMed] [Google Scholar]
- Knobeloch L. M., Ziarnik M., Anderson H. A., Dodson V. N. Imported seabass as a source of mercury exposure: a Wisconsin case study. Environ Health Perspect. 1995 Jun;103(6):604–606. doi: 10.1289/ehp.95103604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebel J., Mergler D., Lucotte M., Amorim M., Dolbec J., Miranda D., Arantès G., Rheault I., Pichet P. Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury. Neurotoxicology. 1996 Spring;17(1):157–167. [PubMed] [Google Scholar]
- Magos L. Selective atomic-absorption determination of inorganic mercury and methylmercury in undigested biological samples. Analyst. 1971 Dec;96(149):847–853. doi: 10.1039/an9719600847. [DOI] [PubMed] [Google Scholar]
- Myers G. J., Davidson P. W., Cox C., Shamlaye C. F., Tanner M. A., Choisy O., Sloane-Reeves J., Marsh D., Cernichiari E., Choi A. Neurodevelopmental outcomes of Seychellois children sixty-six months after in utero exposure to methylmercury from a maternal fish diet: pilot study. Neurotoxicology. 1995 Winter;16(4):639–652. [PubMed] [Google Scholar]
- Roels H., Gennart J. P., Lauwerys R., Buchet J. P., Malchaire J., Bernard A. Surveillance of workers exposed to mercury vapour:validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med. 1985;7(1):45–71. doi: 10.1002/ajim.4700070106. [DOI] [PubMed] [Google Scholar]
- Scheuhammer A. M., Bond D. Factors affecting the determination of total mercury in biological samples by continuous-flow cold vapor atomic absorption spectrophotometry. Biol Trace Elem Res. 1991 Nov;31(2):119–129. doi: 10.1007/BF02990420. [DOI] [PubMed] [Google Scholar]
- Sherlock J. C., Quinn M. J. Underestimation of dose--response relationship with particular reference to the relationship between the dietary intake of mercury and its concentration in blood. Hum Toxicol. 1988 Mar;7(2):129–132. doi: 10.1177/096032718800700204. [DOI] [PubMed] [Google Scholar]
- Sherlock J., Hislop J., Newton D., Topping G., Whittle K. Elevation of mercury in human blood from controlled chronic ingestion of methylmercury in fish. Hum Toxicol. 1984 Apr;3(2):117–131. doi: 10.1177/096032718400300205. [DOI] [PubMed] [Google Scholar]
- Smith J. C., Allen P. V., Turner M. D., Most B., Fisher H. L., Hall L. L. The kinetics of intravenously administered methyl mercury in man. Toxicol Appl Pharmacol. 1994 Oct;128(2):251–256. doi: 10.1006/taap.1994.1204. [DOI] [PubMed] [Google Scholar]
- Stern A. H. Re-evaluation of the reference dose for methylmercury and assessment of current exposure levels. Risk Anal. 1993 Jun;13(3):355–364. doi: 10.1111/j.1539-6924.1993.tb01087.x. [DOI] [PubMed] [Google Scholar]
- Swain E. B., Engstrom D. R., Brigham M. E., Henning T. A., Brezonik P. L. Increasing rates of atmospheric mercury deposition in midcontinental north america. Science. 1992 Aug 7;257(5071):784–787. doi: 10.1126/science.257.5071.784. [DOI] [PubMed] [Google Scholar]
- Tollefson L., Cordle F. Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the United States. Environ Health Perspect. 1986 Sep;68:203–208. doi: 10.1289/ehp.8668203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner M. D., Marsh D. O., Smith J. C., Inglis J. B., Clarkson T. W., Rubio C. E., Chiriboga J., Chiriboga C. C. Methylmercury in populations eating large quantities of marine fish. Arch Environ Health. 1980 Nov-Dec;35(6):367–378. doi: 10.1080/00039896.1980.10667521. [DOI] [PubMed] [Google Scholar]