Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 15;25(20):4153–4159. doi: 10.1093/nar/25.20.4153

Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: genomic sequence and organization of ClC-2.

S Chu 1, P L Zeitlin 1
PMCID: PMC147000  PMID: 9321672

Abstract

The ClC-2 epithelial cell chloride channel is a voltage-, tonicity- and pH-regulated member of the ClC super family. We have previously shown that rat lung ClC-2 (rClC-2) is down-regulated at birth, and molecular diversity is generated by alternative splicing [Murray et al. (1995) Am. J. Respir. Cell Mol. Biol. 12, 597-604; Murray et al. (1996) Am. J. Physiol. 271, L829-L837; Chu et al . (1996) Nucleic Acids Res. 24, 3453-3457]. To investigate other possible mRNA splice variations, we sequenced the entire rClC-2 gene and found that ClC-2Sa (formerly ClC-2S) results from the deletion of exon 20. The preceding intron 19 has an unusually high CT content and a rare AAG acceptor site. Because both features were also found in intron 13, we next tested the hypothesis that intron 13 would be involved in alternative splicing. As predicted, a second splice product, ClC-2Sb, was found by RT-PCR, but only in lung. When we compared the genomic maps of rClC-2 and human ClC-1 (hClC-1), striking similarities were found in each exon except for rClC-2 exon 20, which is absent in hClC-1. These observations suggest that ClC-1 and ClC-2 may have evolved by gene duplication, mutation and DNA rearrangement.

Full Text

The Full Text of this article is available as a PDF (145.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi S., Uchida S., Ito H., Hata M., Hiroe M., Marumo F., Sasaki S. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J Biol Chem. 1994 Jul 1;269(26):17677–17683. [PubMed] [Google Scholar]
  2. Brandt S., Jentsch T. J. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett. 1995 Dec 11;377(1):15–20. doi: 10.1016/0014-5793(95)01298-2. [DOI] [PubMed] [Google Scholar]
  3. Chu S., Murray C. B., Liu M. M., Zeitlin P. L. A short CIC-2 mRNA transcript is produced by exon skipping. Nucleic Acids Res. 1996 Sep 1;24(17):3453–3457. doi: 10.1093/nar/24.17.3453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham S. A., Awayda M. S., Bubien J. K., Ismailov I. I., Arrate M. P., Berdiev B. K., Benos D. J., Fuller C. M. Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem. 1995 Dec 29;270(52):31016–31026. doi: 10.1074/jbc.270.52.31016. [DOI] [PubMed] [Google Scholar]
  5. Fahlke C., Knittle T., Gurnett C. A., Campbell K. P., George A. L., Jr Subunit stoichiometry of human muscle chloride channels. J Gen Physiol. 1997 Jan;109(1):93–104. doi: 10.1085/jgp.109.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher S. E., Black G. C., Lloyd S. E., Hatchwell E., Wrong O., Thakker R. V., Craig I. W. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet. 1994 Nov;3(11):2053–2059. [PubMed] [Google Scholar]
  7. Fuller C. M., Ismailov I. I., Keeton D. A., Benos D. J. Phosphorylation and activation of a bovine tracheal anion channel by Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1994 Oct 28;269(43):26642–26650. [PubMed] [Google Scholar]
  8. Furukawa T., Horikawa S., Terai T., Ogura T., Katayama Y., Hiraoka M. Molecular cloning and characterization of a novel truncated from (ClC-2 beta) of ClC-2 alpha (ClC-2G) in rabbit heart. FEBS Lett. 1995 Nov 13;375(1-2):56–62. doi: 10.1016/0014-5793(95)01178-h. [DOI] [PubMed] [Google Scholar]
  9. George A. L., Jr, Crackower M. A., Abdalla J. A., Hudson A. J., Ebers G. C. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet. 1993 Apr;3(4):305–310. doi: 10.1038/ng0493-305. [DOI] [PubMed] [Google Scholar]
  10. Goedert M., Spillantini M. G., Potier M. C., Ulrich J., Crowther R. A. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 1989 Feb;8(2):393–399. doi: 10.1002/j.1460-2075.1989.tb03390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goux-Pelletan M., Libri D., d'Aubenton-Carafa Y., Fiszman M., Brody E., Marie J. In vitro splicing of mutually exclusive exons from the chicken beta-tropomyosin gene: role of the branch point location and very long pyrimidine stretch. EMBO J. 1990 Jan;9(1):241–249. doi: 10.1002/j.1460-2075.1990.tb08101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gründer S., Thiemann A., Pusch M., Jentsch T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992 Dec 24;360(6406):759–762. doi: 10.1038/360759a0. [DOI] [PubMed] [Google Scholar]
  13. Himmler A. Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol. 1989 Apr;9(4):1389–1396. doi: 10.1128/mcb.9.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hwang T. C., Lu L., Zeitlin P. L., Gruenert D. C., Huganir R., Guggino W. B. Cl- channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science. 1989 Jun 16;244(4910):1351–1353. doi: 10.1126/science.2472005. [DOI] [PubMed] [Google Scholar]
  15. Hölzl B., Huber R., Paulweber B., Patsch J. R., Sandhofer F. Lipoprotein lipase deficiency due to a 3' splice site mutation in intron 6 of the lipoprotein lipase gene. J Lipid Res. 1994 Dec;35(12):2161–2169. [PubMed] [Google Scholar]
  16. Jordt S. E., Jentsch T. J. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 1997 Apr 1;16(7):1582–1592. doi: 10.1093/emboj/16.7.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawasaki M., Uchida S., Monkawa T., Miyawaki A., Mikoshiba K., Marumo F., Sasaki S. Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron. 1994 Mar;12(3):597–604. doi: 10.1016/0896-6273(94)90215-1. [DOI] [PubMed] [Google Scholar]
  18. Koch M. C., Steinmeyer K., Lorenz C., Ricker K., Wolf F., Otto M., Zoll B., Lehmann-Horn F., Grzeschik K. H., Jentsch T. J. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992 Aug 7;257(5071):797–800. doi: 10.1126/science.1379744. [DOI] [PubMed] [Google Scholar]
  19. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  20. Lorenz C., Meyer-Kleine C., Steinmeyer K., Koch M. C., Jentsch T. J. Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet. 1994 Jun;3(6):941–946. doi: 10.1093/hmg/3.6.941. [DOI] [PubMed] [Google Scholar]
  21. Ludewig U., Pusch M., Jentsch T. J. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature. 1996 Sep 26;383(6598):340–343. doi: 10.1038/383340a0. [DOI] [PubMed] [Google Scholar]
  22. Middleton R. E., Pheasant D. J., Miller C. Homodimeric architecture of a ClC-type chloride ion channel. Nature. 1996 Sep 26;383(6598):337–340. doi: 10.1038/383337a0. [DOI] [PubMed] [Google Scholar]
  23. Mizuno T., Iwashina M., Itakura M., Hagiwara H., Hirose S. A variant form of the type C atrial natriuretic peptide receptor generated by alternative RNA splicing. J Biol Chem. 1993 Mar 5;268(7):5162–5167. [PubMed] [Google Scholar]
  24. Murray C. B., Morales M. M., Flotte T. R., McGrath-Morrow S. A., Guggino W. B., Zeitlin P. L. CIC-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol. 1995 Jun;12(6):597–604. doi: 10.1165/ajrcmb.12.6.7766424. [DOI] [PubMed] [Google Scholar]
  25. Mühlemann O., Kreivi J. P., Akusjärvi G. Enhanced splicing of nonconsensus 3' splice sites late during adenovirus infection. J Virol. 1995 Nov;69(11):7324–7327. doi: 10.1128/jvi.69.11.7324-7327.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petrukhin K., Lutsenko S., Chernov I., Ross B. M., Kaplan J. H., Gilliam T. C. Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet. 1994 Sep;3(9):1647–1656. doi: 10.1093/hmg/3.9.1647. [DOI] [PubMed] [Google Scholar]
  27. Popielarz M., Cavaloc Y., Mattei M. G., Gattoni R., Stévenin J. The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts. J Biol Chem. 1995 Jul 28;270(30):17830–17835. doi: 10.1074/jbc.270.30.17830. [DOI] [PubMed] [Google Scholar]
  28. Recio L., Simpson D., Cochrane J., Liber H., Skopek T. R. Molecular analysis of hprt mutants induced by 2-cyanoethylene oxide in human lymphoblastoid cells. Mutat Res. 1990 Nov;242(3):195–208. doi: 10.1016/0165-1218(90)90085-g. [DOI] [PubMed] [Google Scholar]
  29. Ren H., Stiles G. L. Characterization of the human A1 adenosine receptor gene. Evidence for alternative splicing. J Biol Chem. 1994 Jan 28;269(4):3104–3110. [PubMed] [Google Scholar]
  30. Schoumacher R. A., Shoemaker R. L., Halm D. R., Tallant E. A., Wallace R. W., Frizzell R. A. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature. 1987 Dec 24;330(6150):752–754. doi: 10.1038/330752a0. [DOI] [PubMed] [Google Scholar]
  31. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shire D., Carillon C., Kaghad M., Calandra B., Rinaldi-Carmona M., Le Fur G., Caput D., Ferrara P. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem. 1995 Feb 24;270(8):3726–3731. doi: 10.1074/jbc.270.8.3726. [DOI] [PubMed] [Google Scholar]
  33. Smith C. W., Chu T. T., Nadal-Ginard B. Scanning and competition between AGs are involved in 3' splice site selection in mammalian introns. Mol Cell Biol. 1993 Aug;13(8):4939–4952. doi: 10.1128/mcb.13.8.4939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smoller D. A., Petrov D., Hartl D. L. Characterization of bacteriophage P1 library containing inserts of Drosophila DNA of 75-100 kilobase pairs. Chromosoma. 1991 Sep;100(8):487–494. doi: 10.1007/BF00352199. [DOI] [PubMed] [Google Scholar]
  35. Sommer B., Keinänen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Köhler M., Takagi T., Sakmann B., Seeburg P. H. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science. 1990 Sep 28;249(4976):1580–1585. doi: 10.1126/science.1699275. [DOI] [PubMed] [Google Scholar]
  36. Stamm S., Casper D., Dinsmore J., Kaufmann C. A., Brosius J., Helfman D. M. Clathrin light chain B: gene structure and neuron-specific splicing. Nucleic Acids Res. 1992 Oct 11;20(19):5097–5103. doi: 10.1093/nar/20.19.5097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinmeyer K., Schwappach B., Bens M., Vandewalle A., Jentsch T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem. 1995 Dec 29;270(52):31172–31177. doi: 10.1074/jbc.270.52.31172. [DOI] [PubMed] [Google Scholar]
  38. Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
  39. Treisman R., Orkin S. H., Maniatis T. Specific transcription and RNA splicing defects in five cloned beta-thalassaemia genes. Nature. 1983 Apr 14;302(5909):591–596. doi: 10.1038/302591a0. [DOI] [PubMed] [Google Scholar]
  40. Whiting P., McKernan R. M., Iversen L. L. Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9966–9970. doi: 10.1073/pnas.87.24.9966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wong C., Antonarakis S. E., Goff S. C., Orkin S. H., Forget B. G., Nathan D. G., Giardina P. J., Kazazian H. H., Jr Beta-thalassemia due to two novel nucleotide substitutions in consensus acceptor splice sequences of the beta-globin gene. Blood. 1989 Mar;73(4):914–918. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES