Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 15;25(20):4048–4054. doi: 10.1093/nar/25.20.4048

Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans.

R Rezsohazy 1, H G van Luenen 1, R M Durbin 1, R H Plasterk 1
PMCID: PMC147001  PMID: 9321656

Abstract

We have found a novel transposon in the genome of Caenorhabditis elegans. Tc7 is a 921 bp element, made up of two 345 bp inverted repeats separated by a unique, internal sequence. Tc7 does not contain an open reading frame. The outer 38 bp of the inverted repeat show 36 matches with the outer 38 bp of Tc1. This region of Tc1 contains the Tc1-transposase binding site. Furthermore, Tc7 is flanked by TA dinucleotides, just like Tc1, which presumably correspond to the target duplication generated upon integration. Since Tc7 does not encode its own transposase but contains the Tc1-transposase binding site at its extremities, we tested the ability of Tc7 to jump upon forced expression of Tc1 transposase in somatic cells. Under these conditions Tc7 jumps at a frequency similar to Tc1. The target site choice of Tc7 is identical to that of Tc1. These data suggest that Tc7 shares with Tc1 all the sequences minimally required to parasitize upon the Tc1 transposition machinery. The genomic distribution of Tc7 shows a striking clustering on the X chromosome where two thirds of the elements (20 out of 33) are located. Related transposons in C. elegans do not show this asymmetric distribution.

Full Text

The Full Text of this article is available as a PDF (199.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Auge-Gouillou C., Bigot Y., Pollet N., Hamelin M. H., Meunier-Rotival M., Periquet G. Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett. 1995 Jul 24;368(3):541–546. doi: 10.1016/0014-5793(95)00735-r. [DOI] [PubMed] [Google Scholar]
  3. Chomet P., Lisch D., Hardeman K. J., Chandler V. L., Freeling M. Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics. 1991 Sep;129(1):261–270. doi: 10.1093/genetics/129.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collins J. J., Anderson P. The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics. 1994 Jul;137(3):771–781. doi: 10.1093/genetics/137.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins J., Forbes E., Anderson P. The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics. 1989 Jan;121(1):47–55. doi: 10.1093/genetics/121.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins J., Saari B., Anderson P. Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature. 1987 Aug 20;328(6132):726–728. doi: 10.1038/328726a0. [DOI] [PubMed] [Google Scholar]
  7. Colloms S. D., van Luenen H. G., Plasterk R. H. DNA binding activities of the Caenorhabditis elegans Tc3 transposase. Nucleic Acids Res. 1994 Dec 25;22(25):5548–5554. doi: 10.1093/nar/22.25.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emmons S. W., Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell. 1984 Mar;36(3):599–605. doi: 10.1016/0092-8674(84)90339-8. [DOI] [PubMed] [Google Scholar]
  9. Emmons S. W., Yesner L., Ruan K. S., Katzenberg D. Evidence for a transposon in Caenorhabditis elegans. Cell. 1983 Jan;32(1):55–65. doi: 10.1016/0092-8674(83)90496-8. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Finnegan D. J. Transposable elements. Curr Opin Genet Dev. 1992 Dec;2(6):861–867. doi: 10.1016/s0959-437x(05)80108-x. [DOI] [PubMed] [Google Scholar]
  12. Fino Silva I., Plasterk R. H. Characterization of a G-protein alpha-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol. 1990 Oct 20;215(4):483–487. doi: 10.1016/s0022-2836(05)80160-3. [DOI] [PubMed] [Google Scholar]
  13. Henikoff S. Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol. 1992 Apr;4(4):382–388. [PubMed] [Google Scholar]
  14. Hodgkin J., Plasterk R. H., Waterston R. H. The nematode Caenorhabditis elegans and its genome. Science. 1995 Oct 20;270(5235):410–414. doi: 10.1126/science.270.5235.410. [DOI] [PubMed] [Google Scholar]
  15. Moerman D. G., Waterston R. H. Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac. Genetics. 1984 Dec;108(4):859–877. doi: 10.1093/genetics/108.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morgan G. T. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J Mol Biol. 1995 Nov 17;254(1):1–5. doi: 10.1006/jmbi.1995.0593. [DOI] [PubMed] [Google Scholar]
  17. Mori I., Moerman D. G., Waterston R. H. Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics. 1988 Oct;120(2):397–407. doi: 10.1093/genetics/120.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Naclerio G., Cangiano G., Coulson A., Levitt A., Ruvolo V., La Volpe A. Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans. J Mol Biol. 1992 Jul 5;226(1):159–168. doi: 10.1016/0022-2836(92)90131-3. [DOI] [PubMed] [Google Scholar]
  19. Oosumi T., Belknap W. R., Garlick B. Mariner transposons in humans. Nature. 1995 Dec 14;378(6558):672–672. doi: 10.1038/378672a0. [DOI] [PubMed] [Google Scholar]
  20. Oosumi T., Garlick B., Belknap W. R. Identification and characterization of putative transposable DNA elements in solanaceous plants and Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8886–8890. doi: 10.1073/pnas.92.19.8886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oosumi T., Garlick B., Belknap W. R. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J Mol Evol. 1996 Jul;43(1):11–18. doi: 10.1007/BF02352294. [DOI] [PubMed] [Google Scholar]
  22. Peacock W. J., Dennis E. S., Gerlach W. L., Sachs M. M., Schwartz D. Insertion and excision of Ds controlling elements in maize. Cold Spring Harb Symp Quant Biol. 1984;49:347–354. doi: 10.1101/sqb.1984.049.01.041. [DOI] [PubMed] [Google Scholar]
  23. Plasterk R. H. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J. 1991 Jul;10(7):1919–1925. doi: 10.1002/j.1460-2075.1991.tb07718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reiter L. T., Murakami T., Koeuth T., Pentao L., Muzny D. M., Gibbs R. A., Lupski J. R. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat Genet. 1996 Mar;12(3):288–297. doi: 10.1038/ng0396-288. [DOI] [PubMed] [Google Scholar]
  25. Smit A. F., Riggs A. D. Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1443–1448. doi: 10.1073/pnas.93.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sutton W. D., Gerlach W. L., Peacock W. J., Schwartz D. Molecular analysis of ds controlling element mutations at the adh1 locus of maize. Science. 1984 Mar 23;223(4642):1265–1268. doi: 10.1126/science.223.4642.1265. [DOI] [PubMed] [Google Scholar]
  27. Vos J. C., De Baere I., Plasterk R. H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 1996 Mar 15;10(6):755–761. doi: 10.1101/gad.10.6.755. [DOI] [PubMed] [Google Scholar]
  28. Vos J. C., Plasterk R. H. Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J. 1994 Dec 15;13(24):6125–6132. doi: 10.1002/j.1460-2075.1994.tb06959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vos J. C., van Luenen H. G., Plasterk R. H. Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev. 1993 Jul;7(7A):1244–1253. doi: 10.1101/gad.7.7a.1244. [DOI] [PubMed] [Google Scholar]
  30. Waterston R., Sulston J. The genome of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10836–10840. doi: 10.1073/pnas.92.24.10836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Luenen H. G., Colloms S. D., Plasterk R. H. Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase. EMBO J. 1993 Jun;12(6):2513–2520. doi: 10.1002/j.1460-2075.1993.tb05906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Luenen H. G., Colloms S. D., Plasterk R. H. The mechanism of transposition of Tc3 in C. elegans. Cell. 1994 Oct 21;79(2):293–301. doi: 10.1016/0092-8674(94)90198-8. [DOI] [PubMed] [Google Scholar]
  33. van Luenen H. G., Plasterk R. H. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res. 1994 Feb 11;22(3):262–269. doi: 10.1093/nar/22.3.262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES