Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 15;25(20):3984–3990. doi: 10.1093/nar/25.20.3984

Vaccinia virion protein VP8, the 25 kDa product of the L4R gene, binds single-stranded DNA and RNA with similar affinity.

C D Bayliss 1, G L Smith 1
PMCID: PMC147007  PMID: 9321647

Abstract

Vaccinia virus protein VP8 is a 25 kDa product of the L4R gene and is an abundant virion protein that binds single-stranded (ss) and double-stranded (ds) DNA. Binding of ssDNA is preferred at high salt concentrations. Using a recombinant 25 kDa L4R (rL4R) protein and a gel mobility shift assay with radiolabelled oligonucleotides, the Kd for a 45mer oligonucleotide was determined to be 2 nM. The Kd was unaltered by 50 mM KCl but was reduced 35-fold by 100 mM KCl. Multiple rL4R molecules bound to a single 45mer oligonucleotide, and using oligonucleotides of different lengths it was calculated that one rL4R molecule bound every 17 nt. Binding to ssDNA was competed by both deoxyribo- and ribo-polynucleotides. RNA binding was observed for both rL4R and native VP8, purified from virions, using a gel mobility shift with a radiolabelled ssRNA of 130 nt. The Kd of rL4R for this ssRNA substrate was 3 nM in the absence of salt and binding was positively cooperative. The potential roles of L4R protein in vaccinia virus early transcription are discussed.

Full Text

The Full Text of this article is available as a PDF (191.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baroudy B. M., Moss B. Purification and characterization of a DNA-dependent RNA polymerase from vaccinia virions. J Biol Chem. 1980 May 10;255(9):4372–4380. [PubMed] [Google Scholar]
  2. Bayliss C. D., Smith G. L. Vaccinia virion protein I8R has both DNA and RNA helicase activities: implications for vaccinia virus transcription. J Virol. 1996 Feb;70(2):794–800. doi: 10.1128/jvi.70.2.794-800.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayliss C. D., Wilcock D., Smith G. L. Stimulation of vaccinia virion DNA helicase I8R, but not A18R, by a vaccinia core protein L4R, an ssDNA binding protein. J Gen Virol. 1996 Nov;77(Pt 11):2827–2831. doi: 10.1099/0022-1317-77-11-2827. [DOI] [PubMed] [Google Scholar]
  4. Broyles S. S., Yuen L., Shuman S., Moss B. Purification of a factor required for transcription of vaccinia virus early genes. J Biol Chem. 1988 Aug 5;263(22):10754–10760. [PubMed] [Google Scholar]
  5. Carey J. Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc Natl Acad Sci U S A. 1988 Feb;85(4):975–979. doi: 10.1073/pnas.85.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Essani K., Dales S. Biogenesis of vaccinia: evidence for more than 100 polypeptides in the virion. Virology. 1979 Jun;95(2):385–394. doi: 10.1016/0042-6822(79)90493-8. [DOI] [PubMed] [Google Scholar]
  7. Gross C. H., Shuman S. Vaccinia virions lacking the RNA helicase nucleoside triphosphate phosphohydrolase II are defective in early transcription. J Virol. 1996 Dec;70(12):8549–8557. doi: 10.1128/jvi.70.12.8549-8557.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ichihashi Y., Oie M., Tsuruhara T. Location of DNA-binding proteins and disulfide-linked proteins in vaccinia virus structural elements. J Virol. 1984 Jun;50(3):929–938. doi: 10.1128/jvi.50.3.929-938.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lane D., Prentki P., Chandler M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev. 1992 Dec;56(4):509–528. doi: 10.1128/mr.56.4.509-528.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moss B. Regulation of vaccinia virus transcription. Annu Rev Biochem. 1990;59:661–688. doi: 10.1146/annurev.bi.59.070190.003305. [DOI] [PubMed] [Google Scholar]
  11. Moss B., Rosenblum E. N., Gershowitz A. Characterization of a polyriboadenylate polymerase from vaccinia virions. J Biol Chem. 1975 Jun 25;250(12):4722–4729. [PubMed] [Google Scholar]
  12. Oie M., Ichihashi Y. Characterization of vaccinia polypeptides. Virology. 1981 Aug;113(1):263–276. doi: 10.1016/0042-6822(81)90153-7. [DOI] [PubMed] [Google Scholar]
  13. Rosales R., Sutter G., Moss B. A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3794–3798. doi: 10.1073/pnas.91.9.3794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shuman S., Broyles S. S., Moss B. Purification and characterization of a transcription termination factor from vaccinia virions. J Biol Chem. 1987 Sep 5;262(25):12372–12380. [PubMed] [Google Scholar]
  15. Shuman S. Vaccinia virus RNA helicase: an essential enzyme related to the DE-H family of RNA-dependent NTPases. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10935–10939. doi: 10.1073/pnas.89.22.10935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Simpson D. A., Condit R. C. Vaccinia virus gene A18R encodes an essential DNA helicase. J Virol. 1995 Oct;69(10):6131–6139. doi: 10.1128/jvi.69.10.6131-6139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sodeik B., Doms R. W., Ericsson M., Hiller G., Machamer C. E., van 't Hof W., van Meer G., Moss B., Griffiths G. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol. 1993 May;121(3):521–541. doi: 10.1083/jcb.121.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Soengas M. S., Gutiérrez C., Salas M. Helix-destabilizing activity of phi 29 single-stranded DNA binding protein: effect on the elongation rate during strand displacement DNA replication. J Mol Biol. 1995 Nov 3;253(4):517–529. doi: 10.1006/jmbi.1995.0570. [DOI] [PubMed] [Google Scholar]
  19. Spencer E., Shuman S., Hurwitz J. Purification and properties of vaccinia virus DNA-dependent RNA polymerase. J Biol Chem. 1980 Jun 10;255(11):5388–5395. [PubMed] [Google Scholar]
  20. Weir J. P., Moss B. Regulation of expression and nucleotide sequence of a late vaccinia virus gene. J Virol. 1984 Sep;51(3):662–669. doi: 10.1128/jvi.51.3.662-669.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Whitehead S. S., Hruby D. E. A transcriptionally controlled trans-processing assay: putative identification of a vaccinia virus-encoded proteinase which cleaves precursor protein P25K. J Virol. 1994 Nov;68(11):7603–7608. doi: 10.1128/jvi.68.11.7603-7608.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilcock D., Smith G. L. Vaccinia virions lacking core protein VP8 are deficient in early transcription. J Virol. 1996 Feb;70(2):934–943. doi: 10.1128/jvi.70.2.934-943.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilcock D., Smith G. L. Vaccinia virus core protein VP8 is required for virus infectivity, but not for core protein processing or for INV and EEV formation. Virology. 1994 Jul;202(1):294–304. doi: 10.1006/viro.1994.1346. [DOI] [PubMed] [Google Scholar]
  24. Yang W. P., Bauer W. R. Purification and characterization of vaccinia virus structural protein VP8. Virology. 1988 Dec;167(2):578–584. [PubMed] [Google Scholar]
  25. Yang W. P., Kao S. Y., Bauer W. R. Biosynthesis and post-translational cleavage of vaccinia virus structural protein VP8. Virology. 1988 Dec;167(2):585–590. [PubMed] [Google Scholar]
  26. Zijderveld D. C., van der Vliet P. C. Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol. 1994 Feb;68(2):1158–1164. doi: 10.1128/jvi.68.2.1158-1164.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES