Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Oct 15;25(20):4167–4168. doi: 10.1093/nar/25.20.4167

A dicistronic construct allows easy detection of human CFTR expression from YAC DNA in human cells.

G Vassaux 1, C Huxley 1
PMCID: PMC147010  PMID: 9321676

Abstract

We have made a dicistronic construct where the picornaviral internal ribosome-entry site (IRES) driving the expression of the beta-geo gene has been inserted into the 3'untranslated region of the human CFTR gene present in a YAC. When introduced into the human cell line Caco-2 expressing the CFTR gene, the expression of the dicistronic gene can be detected by lacZ staining and follows the accumulation of the endogenous CFTR mRNA upon differentiation of the cells. These data demonstrate that this IRES-based approach presents an alternative to mRNA in situ hybridisation and allows detection of expression in an autologous system.

Full Text

The Full Text of this article is available as a PDF (227.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borman A. M., Le Mercier P., Girard M., Kean K. M. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res. 1997 Mar 1;25(5):925–932. doi: 10.1093/nar/25.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davies N. P., Huxley C. YAC transfer into mammalian cells by cell fusion. Methods Mol Biol. 1996;54:281–292. doi: 10.1385/0-89603-313-9:281. [DOI] [PubMed] [Google Scholar]
  3. Duff K., McGuigan A., Huxley C., Schulz F., Hardy J. Insertion of a pathogenic mutation into a yeast artificial chromosome containing the human amyloid precursor protein gene. Gene Ther. 1994 Jan;1(1):70–75. [PubMed] [Google Scholar]
  4. Frazer K. A., Narla G., Zhang J. L., Rubin E. M. The apolipoprotein(a) gene is regulated by sex hormones and acute-phase inducers in YAC transgenic mice. Nat Genet. 1995 Apr;9(4):424–431. doi: 10.1038/ng0495-424. [DOI] [PubMed] [Google Scholar]
  5. Manson A. L., Trezise A. E., MacVinish L. J., Kasschau K. D., Birchall N., Episkopou V., Vassaux G., Evans M. J., Colledge W. H., Cuthbert A. W. Complementation of null CF mice with a human CFTR YAC transgene. EMBO J. 1997 Jul 16;16(14):4238–4249. doi: 10.1093/emboj/16.14.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mountford P., Zevnik B., Düwel A., Nichols J., Li M., Dani C., Robertson M., Chambers I., Smith A. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4303–4307. doi: 10.1073/pnas.91.10.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Peterson K. R., Clegg C. H., Li Q., Stamatoyannopoulos G. Production of transgenic mice with yeast artificial chromosomes. Trends Genet. 1997 Feb;13(2):61–66. doi: 10.1016/s0168-9525(97)01003-2. [DOI] [PubMed] [Google Scholar]
  8. Peterson K. R., Li Q. L., Clegg C. H., Furukawa T., Navas P. A., Norton E. J., Kimbrough T. G., Stamatoyannopoulos G. Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of beta-globin locus YAC mice carrying human globin developmental mutants. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5655–5659. doi: 10.1073/pnas.92.12.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Peterson K. R., Zitnik G., Huxley C., Lowrey C. H., Gnirke A., Leppig K. A., Papayannopoulou T., Stamatoyannopoulos G. Use of yeast artificial chromosomes (YACs) for studying control of gene expression: correct regulation of the genes of a human beta-globin locus YAC following transfer to mouse erythroleukemia cell lines. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11207–11211. doi: 10.1073/pnas.90.23.11207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ramesh N., Kim S. T., Wei M. Q., Khalighi M., Osborne W. R. High-titer bicistronic retroviral vectors employing foot-and-mouth disease virus internal ribosome entry site. Nucleic Acids Res. 1996 Jul 15;24(14):2697–2700. doi: 10.1093/nar/24.14.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rothstein R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 1991;194:281–301. doi: 10.1016/0076-6879(91)94022-5. [DOI] [PubMed] [Google Scholar]
  12. Smith A. N., Barth M. L., McDowell T. L., Moulin D. S., Nuthall H. N., Hollingsworth M. A., Harris A. A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1996 Apr 26;271(17):9947–9954. doi: 10.1074/jbc.271.17.9947. [DOI] [PubMed] [Google Scholar]
  13. Smith A. N., Wardle C. J., Harris A. Characterization of DNASE I hypersensitive sites in the 120kb 5' to the CFTR gene. Biochem Biophys Res Commun. 1995 Jun 6;211(1):274–281. doi: 10.1006/bbrc.1995.1807. [DOI] [PubMed] [Google Scholar]
  14. Sood R., Bear C., Auerbach W., Reyes E., Jensen T., Kartner N., Riordan J. R., Buchwald M. Regulation of CFTR expression and function during differentiation of intestinal epithelial cells. EMBO J. 1992 Jul;11(7):2487–2494. doi: 10.1002/j.1460-2075.1992.tb05313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES