Abstract
The peculiar characteristics of dust toxicity are discussed in relation to the processes taking place at the particle-biological medium interface. Because of surface reactivity, toxicity of solids is not merely predictable from chemical composition and molecular structure, as with water soluble compounds. With particles having the same bulk composition, micromorphology (the thermal and mechanical history of dust and adsorption from the environment) determines the kind and abundance of active surface sites, thus modulating reactivity toward cells and tissues. The quantitative evaluation of doses is discussed in comparisons of dose-response relationships obtained with different materials. Responses related to the surface of the particle are better compared on a per-unit surface than per-unit weight basis. The role of micromorphology, hydrophilicity, and reactive surface cations in determining the pathogenicity of inhaled particles is described with reference to silica and asbestos toxicity. Heating crystalline silica decreases hydrophilicity, with consequent modifications in membranolytic potential, retention, and transport. Transition metal ions exposed at the surface generate free radicals in aqueous suspensions. Continuous redox cycling of iron, with consequent activation-reactivation of the surface sites releasing free radicals, could account for the long-term pathogenicity caused by the inhalation of iron-containing fibers. In various pathogenicities caused by mixed dusts, the contact between components modifies toxicity. Hard metal lung disease is caused by exposure to mixtures of metals and carbides, typically cobalt (Co) and tungsten carbide (WC), but not to single components. Toxicity stems from reactive oxygen species generation in a mechanism involving both Co metal and WC in mutual contact. A relationship between the extent of water adsorption and biopersistence is proposed for vitreous fibers. Modifications of the surface taking place in vivo are described for ferruginous bodies and for the progressive comminution of chrysotile asbestos fibers.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi S., Yoshida S., Kawamura K., Takahashi M., Uchida H., Odagiri Y., Takemoto K. Inductions of oxidative DNA damage and mesothelioma by crocidolite, with special reference to the presence of iron inside and outside of asbestos fiber. Carcinogenesis. 1994 Apr;15(4):753–758. doi: 10.1093/carcin/15.4.753. [DOI] [PubMed] [Google Scholar]
- Churg A. M., Warnock M. L. Asbestos and other ferruginous bodies: their formation and clinical significance. Am J Pathol. 1981 Mar;102(3):447–456. [PMC free article] [PubMed] [Google Scholar]
- Daniel L. N., Mao Y., Wang T. C., Markey C. J., Markey S. P., Shi X., Saffiotti U. DNA strand breakage, thymine glycol production, and hydroxyl radical generation induced by different samples of crystalline silica in vitro. Environ Res. 1995 Oct;71(1):60–73. doi: 10.1006/enrs.1995.1068. [DOI] [PubMed] [Google Scholar]
- Davis J. M. Mixed fibrous and non-fibrous dust exposures and interactions between agents in fibre carcinogenesis. IARC Sci Publ. 1996;(140):127–135. [PubMed] [Google Scholar]
- ENGLEBRECHT F. M., YOGANATHAN M., KING E. J., NAGELSCHMIDT G. Fibrosis and collagen in rats' lungs produced by etched and unetched free silica dusts. AMA Arch Ind Health. 1958 Apr;17(4):287–294. [PubMed] [Google Scholar]
- Elias Z., Poirot O., Schneider O., Marande A. M., Danière M. C., Terzetti F., Pezerat H., Fournier J., Zalma R. Cytotoxic and transforming effects of some iron-containing minerals in Syrian hamster embryo cells. Cancer Detect Prev. 1995;19(5):405–414. [PubMed] [Google Scholar]
- Fournier J., Pezerat H. Studies on surface properties of asbestos. III. Interactions between asbestos and polynuclear aromatic hydrocarbons. Environ Res. 1986 Oct;41(1):276–295. doi: 10.1016/s0013-9351(86)80189-x. [DOI] [PubMed] [Google Scholar]
- Fubini B., Bolis V., Cavenago A., Volante M. Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses. Scand J Work Environ Health. 1995;21 (Suppl 2):9–14. [PubMed] [Google Scholar]
- Fubini B., Giamello E., Volante M., Bolis V. Chemical functionalities at the silica surface determining its reactivity when inhaled. Formation and reactivity of surface radicals. Toxicol Ind Health. 1990 Dec;6(6):571–598. [PubMed] [Google Scholar]
- Fubini B., Mollo L., Giamello E. Free radical generation at the solid/liquid interface in iron containing minerals. Free Radic Res. 1995 Dec;23(6):593–614. doi: 10.3109/10715769509065280. [DOI] [PubMed] [Google Scholar]
- Fubini B., Mollo L. Role of iron in the reactivity of mineral fibers. Toxicol Lett. 1995 Dec;82-83:951–960. doi: 10.1016/0378-4274(95)03531-1. [DOI] [PubMed] [Google Scholar]
- Gerde P., Scholander P. Adsorption of benzo(a)pyrene on to asbestos and manmade mineral fibres in an aqueous solution and in a biological model solution. Br J Ind Med. 1988 Oct;45(10):682–688. doi: 10.1136/oem.45.10.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghio A. J., Kennedy T. P., Stonehuerner J. G., Crumbliss A. L., Hoidal J. R. DNA strand breaks following in vitro exposure to asbestos increase with surface-complexed [Fe3+]. Arch Biochem Biophys. 1994 May 15;311(1):13–18. doi: 10.1006/abbi.1994.1202. [DOI] [PubMed] [Google Scholar]
- Gilmour P. S., Beswick P. H., Brown D. M., Donaldson K. Detection of surface free radical activity of respirable industrial fibres using supercoiled phi X174 RF1 plasmid DNA. Carcinogenesis. 1995 Dec;16(12):2973–2979. doi: 10.1093/carcin/16.12.2973. [DOI] [PubMed] [Google Scholar]
- Gold J., Amandusson H., Krozer A., Kasemo B., Ericsson T., Zanetti G., Fubini B. Chemical characterization and reactivity of iron chelator-treated amphibole asbestos. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1021–1030. doi: 10.1289/ehp.97105s51021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Governa M., Rosanda C. A histochemical study of the asbestos body coating. Br J Ind Med. 1972 Apr;29(2):154–159. doi: 10.1136/oem.29.2.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilianelli C., Baeza-Squiban A., Boisvieux-Ulrich E., Houcine O., Zalma R., Guennou C., Pezerat H., Marano F. Effect of mineral particles containing iron on primary cultures of rabbit tracheal epithelial cells: possible implication of oxidative stress. Environ Health Perspect. 1993 Oct;101(5):436–442. doi: 10.1289/ehp.93101436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulumian M., van Wyk J. A. Hydroxyl radical production in the presence of fibres by a Fenton-type reaction. Chem Biol Interact. 1987;62(1):89–97. doi: 10.1016/0009-2797(87)90081-0. [DOI] [PubMed] [Google Scholar]
- Harington J. S., Allison A. C., Badami D. V. Mineral fibers: chemical, physicochemical, and biological properties. Adv Pharmacol Chemother. 1975;12(0):291–402. doi: 10.1016/s1054-3589(08)60223-9. [DOI] [PubMed] [Google Scholar]
- Hemenway D. R., Absher M. P., Fubini B., Bolis V. What is the relationship between hemolytic potential and fibrogenicity of mineral dusts? Arch Environ Health. 1993 Sep-Oct;48(5):343–347. doi: 10.1080/00039896.1993.9936723. [DOI] [PubMed] [Google Scholar]
- Hemenway D. R., Absher M. P., Trombley L., Vacek P. M. Comparative clearance of quartz and cristobalite from the lung. Am Ind Hyg Assoc J. 1990 Jul;51(7):363–369. doi: 10.1080/15298669091369790. [DOI] [PubMed] [Google Scholar]
- Hill I. M., Beswick P. H., Donaldson K. Differential release of superoxide anions by macrophages treated with long and short fibre amosite asbestos is a consequence of differential affinity for opsonin. Occup Environ Med. 1995 Feb;52(2):92–96. doi: 10.1136/oem.52.2.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobson J., Wright J. L., Churg A. Active oxygen species mediate asbestos fiber uptake by tracheal epithelial cells. FASEB J. 1990 Oct;4(13):3135–3139. doi: 10.1096/fasebj.4.13.2170219. [DOI] [PubMed] [Google Scholar]
- Jaurand M. C., Gaudichet A., Halpern S., Bignon J. In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect. Br J Ind Med. 1984 Aug;41(3):389–395. doi: 10.1136/oem.41.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaurand M. C., Magne L., Boulmier J. L., Bignon J. In vitro reactivity of alveolar macrophages and red blood cells with asbestos fibres treated with oxalic acid, sulfur dioxide and benzo-3,4-pyrene. Toxicology. 1981;21(4):323–342. doi: 10.1016/0300-483x(81)90147-5. [DOI] [PubMed] [Google Scholar]
- KING E. J., MOHANTY G. P., HARRISON C. V., NAGELSCHMIDT G. The action of different forms of pure silica on the lungs of rats. Br J Ind Med. 1953 Jan;10(1):9–17. doi: 10.1136/oem.10.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293–315. doi: 10.1016/0891-5849(92)90117-y. [DOI] [PubMed] [Google Scholar]
- Langer A. M. Crystal faces and cleavage planes in quartz as templates in biological processes. Q Rev Biophys. 1978 Nov;11(4):543–575. doi: 10.1017/s0033583500005667. [DOI] [PubMed] [Google Scholar]
- Langer A. M., Wolff M. S., Rohl A. N., Selikoff I. J. Variation of properties of chrysotile asbestos subjected to milling. J Toxicol Environ Health. 1978 Jan;4(1):173–188. doi: 10.1080/15287397809529654. [DOI] [PubMed] [Google Scholar]
- Leanderson P., Söderkvist P., Tagesson C., Axelson O. Formation of 8-hydroxydeoxyguanosine by asbestos and man made mineral fibres. Br J Ind Med. 1988 May;45(5):309–311. doi: 10.1136/oem.45.5.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Light W. G., Wei E. T. Surface charge and asbestos toxicity. Nature. 1977 Feb 10;265(5594):537–539. doi: 10.1038/265537a0. [DOI] [PubMed] [Google Scholar]
- Lison D., Carbonnelle P., Mollo L., Lauwerys R., Fubini B. Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Chem Res Toxicol. 1995 Jun;8(4):600–606. doi: 10.1021/tx00046a015. [DOI] [PubMed] [Google Scholar]
- Lison D. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Crit Rev Toxicol. 1996 Nov;26(6):585–616. doi: 10.3109/10408449609037478. [DOI] [PubMed] [Google Scholar]
- Lison D., Lauwerys R., Demedts M., Nemery B. Experimental research into the pathogenesis of cobalt/hard metal lung disease. Eur Respir J. 1996 May;9(5):1024–1028. doi: 10.1183/09031936.96.09051024. [DOI] [PubMed] [Google Scholar]
- Lu J., Keane M. J., Ong T., Wallace W. E. In vitro genotoxicity studies of chrysotile asbestos fibers dispersed in simulated pulmonary surfactant. Mutat Res. 1994 Mar;320(4):253–259. doi: 10.1016/0165-1218(94)90078-7. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis. 1992 Apr;13(4):637–642. doi: 10.1093/carcin/13.4.637. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Williams M. G., Dodson R. F., Aust A. E. Iron associated with asbestos bodies is responsible for the formation of single strand breaks in phi X174 RFI DNA. Occup Environ Med. 1994 Mar;51(3):200–204. doi: 10.1136/oem.51.3.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles P. R., Bowman L., Jones W. G., Berry D. S., Vallyathan V. Changes in alveolar lavage materials and lung microsomal xenobiotic metabolism following exposures to HCl-washed or unwashed crystalline silica. Toxicol Appl Pharmacol. 1994 Dec;129(2):235–242. doi: 10.1006/taap.1994.1248. [DOI] [PubMed] [Google Scholar]
- Morgan A., Holmes A. The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res. 1985 Dec;38(2):283–292. doi: 10.1016/0013-9351(85)90092-1. [DOI] [PubMed] [Google Scholar]
- Murai Y., Kitagawa M., Hiraoka T. Asbestos body formation in the human lung: distinctions, by type and size. Arch Environ Health. 1995 Jan-Feb;50(1):19–25. doi: 10.1080/00039896.1995.9955008. [DOI] [PubMed] [Google Scholar]
- Musselman R. P., Miiller W. C., Eastes W., Hadley J. G., Kamstrup O., Thevenaz P., Hesterberg T. W. Biopersistences of man-made vitreous fibers and crocidolite fibers in rat lungs following short-term exposures. Environ Health Perspect. 1994 Oct;102 (Suppl 5):139–143. doi: 10.1289/ehp.94102s5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nash T., Allison A. C., Harington J. S. Physico-chemical properties of silica in relation to its toxicity. Nature. 1966 Apr 16;210(5033):259–261. doi: 10.1038/210259a0. [DOI] [PubMed] [Google Scholar]
- Nejjari A., Fournier J., Pezerat H., Leanderson P. Mineral fibres: correlation between oxidising surface activity and DNA base hydroxylation. Br J Ind Med. 1993 Jun;50(6):501–504. doi: 10.1136/oem.50.6.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolan R. P., Langer A. M., Harington J. S., Oster G., Selikoff I. J. Quartz hemolysis as related to its surface functionalities. Environ Res. 1981 Dec;26(2):503–520. doi: 10.1016/0013-9351(81)90226-7. [DOI] [PubMed] [Google Scholar]
- Oberdörster G., Ferin J., Lehnert B. E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994 Oct;102 (Suppl 5):173–179. doi: 10.1289/ehp.102-1567252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pandurangi R. S., Seehra M. S., Razzaboni B. L., Bolsaitis P. Surface and bulk infrared modes of crystalline and amorphous silica particles: a study of the relation of surface structure to cytotoxicity of respirable silica. Environ Health Perspect. 1990 Jun;86:327–336. doi: 10.1289/ehp.9086327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pezerat H., Guignard J., Cherrie J. W. Man-made mineral fibers and lung cancer: an hypothesis. Toxicol Ind Health. 1992 Jan-Apr;8(1-2):77–87. doi: 10.1177/074823379200800107. [DOI] [PubMed] [Google Scholar]
- Pezerat H., Zalma R., Guignard J., Jaurand M. C. Production of oxygen radicals by the reduction of oxygen arising from the surface activity of mineral fibres. IARC Sci Publ. 1989;(90):100–111. [PubMed] [Google Scholar]
- Sesko A., Cabot M., Mossman B. Hydrolysis of inositol phospholipids precedes cellular proliferation in asbestos-stimulated tracheobronchial epithelial cells. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7385–7389. doi: 10.1073/pnas.87.19.7385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sébastien P. Biopersistence of man-made vitreous silicate fibers in the human lung. Environ Health Perspect. 1994 Oct;102 (Suppl 5):225–228. doi: 10.1289/ehp.102-1567272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallyathan V., Castranova V., Pack D., Leonard S., Shumaker J., Hubbs A. F., Shoemaker D. A., Ramsey D. M., Pretty J. R., McLaurin J. L. Freshly fractured quartz inhalation leads to enhanced lung injury and inflammation. Potential role of free radicals. Am J Respir Crit Care Med. 1995 Sep;152(3):1003–1009. doi: 10.1164/ajrccm.152.3.7663775. [DOI] [PubMed] [Google Scholar]
- Wiessner J. H., Henderson J. D., Jr, Sohnle P. G., Mandel N. S., Mandel G. S. The effect of crystal structure on mouse lung inflammation and fibrosis. Am Rev Respir Dis. 1988 Aug;138(2):445–450. doi: 10.1164/ajrccm/138.2.445. [DOI] [PubMed] [Google Scholar]
- Wiessner J. H., Mandel N. S., Sohnle P. G., Hasegawa A., Mandel G. S. The effect of chemical modification of quartz surfaces on particulate-induced pulmonary inflammation and fibrosis in the mouse. Am Rev Respir Dis. 1990 Jan;141(1):111–116. doi: 10.1164/ajrccm/141.1.111. [DOI] [PubMed] [Google Scholar]
