Abstract
5-Formyluracil (5-foU) is a major lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. To assess its biochemical effects on DNA replication, 22mer oligonucleotide templates containing an internal 5-foU at defined sites were synthesized by the phosphoramidite method and examined for ability to serve as a template for various DNA polymerases in vitro . Klenow fragments with and without 3'-->5'exonuclease of DNA polymerase I, Thermus thermophilus DNA polymerase (exonuclease-deficient) and Pyrococcus furiosus DNA polymerase (exonuclease-proficient) read through the site of 5-foU in the template. Primer extension assays revealed that the 5-foU directed not only incorporation of dAMP but also dCMP opposite the lesion during DNA synthesis. Misincorporation opposite 5-foU was unaffected by 3'-->5' exonuclease activity. DNA polymerases had different dissociation rates from a dCMP/T mispair and from a dCMP/5-foU mispair. The incorporation of an 'incorrect' nucleotide was dependent on the sequence context and DNA polymerase used. These results suggest that 5-foU produced in DNA has mutagenic potential leading to T-->G transversions during DNA synthesis.
Full Text
The Full Text of this article is available as a PDF (177.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjelland S., Birkeland N. K., Benneche T., Volden G., Seeberg E. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J Biol Chem. 1994 Dec 2;269(48):30489–30495. [PubMed] [Google Scholar]
- Bjelland S., Eide L., Time R. W., Stote R., Eftedal I., Volden G., Seeberg E. Oxidation of thymine to 5-formyluracil in DNA: mechanisms of formation, structural implications, and base excision by human cell free extracts. Biochemistry. 1995 Nov 14;34(45):14758–14764. doi: 10.1021/bi00045a017. [DOI] [PubMed] [Google Scholar]
- Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
- Dizdaroglu M. Measurement of radiation-induced damage to DNA at the molecular level. Int J Radiat Biol. 1992 Feb;61(2):175–183. doi: 10.1080/09553009214550791. [DOI] [PubMed] [Google Scholar]
- Dong Q., Copeland W. C., Wang T. S. Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. J Biol Chem. 1993 Nov 15;268(32):24163–24174. [PubMed] [Google Scholar]
- Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
- Ide H., Tedzuka K., Shimzu H., Kimura Y., Purmal A. A., Wallace S. S., Kow Y. W. Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV. Biochemistry. 1994 Jun 28;33(25):7842–7847. doi: 10.1021/bi00191a011. [DOI] [PubMed] [Google Scholar]
- Ide H., Yamaoka T., Kimura Y. Replication of DNA templates containing the alpha-anomer of deoxyadenosine, a major adenine lesion produced by hydroxyl radicals. Biochemistry. 1994 Jun 14;33(23):7127–7133. doi: 10.1021/bi00189a016. [DOI] [PubMed] [Google Scholar]
- Jaruga P., Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res. 1996 Apr 15;24(8):1389–1394. doi: 10.1093/nar/24.8.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamiya H., Suzuki M., Komatsu Y., Miura H., Kikuchi K., Sakaguchi T., Murata N., Masutani C., Hanaoka F., Ohtsuka E. An abasic site analogue activates a c-Ha-ras gene by a point mutation at modified and adjacent positions. Nucleic Acids Res. 1992 Sep 11;20(17):4409–4415. doi: 10.1093/nar/20.17.4409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamiya H., Ueda T., Ohgi T., Matsukage A., Kasai H. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res. 1995 Mar 11;23(5):761–766. doi: 10.1093/nar/23.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasai H., Crain P. F., Kuchino Y., Nishimura S., Ootsuyama A., Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986 Nov;7(11):1849–1851. doi: 10.1093/carcin/7.11.1849. [DOI] [PubMed] [Google Scholar]
- Kasai H., Iida A., Yamaizumi Z., Nishimura S., Tanooka H. 5-Formyldeoxyuridine: a new type of DNA damage induced by ionizing radiation and its mutagenicity to salmonella strain TA102. Mutat Res. 1990 Apr;243(4):249–253. doi: 10.1016/0165-7992(90)90139-b. [DOI] [PubMed] [Google Scholar]
- Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
- Maccabee M., Evans J. S., Glackin M. P., Hatahet Z., Wallace S. S. Pyrimidine ring fragmentation products. Effects of lesion structure and sequence context on mutagenesis. J Mol Biol. 1994 Feb 18;236(2):514–530. doi: 10.1006/jmbi.1994.1162. [DOI] [PubMed] [Google Scholar]
- Randall S. K., Eritja R., Kaplan B. E., Petruska J., Goodman M. F. Nucleotide insertion kinetics opposite abasic lesions in DNA. J Biol Chem. 1987 May 15;262(14):6864–6870. [PubMed] [Google Scholar]
- Rüttimann C., Cotorás M., Zaldívar J., Vicuña R. DNA polymerases from the extremely thermophilic bacterium Thermus thermophilus HB-8. Eur J Biochem. 1985 May 15;149(1):41–46. doi: 10.1111/j.1432-1033.1985.tb08890.x. [DOI] [PubMed] [Google Scholar]
- Seeberg E., Eide L., Bjørås M. The base excision repair pathway. Trends Biochem Sci. 1995 Oct;20(10):391–397. doi: 10.1016/s0968-0004(00)89086-6. [DOI] [PubMed] [Google Scholar]
- Tchou J., Bodepudi V., Shibutani S., Antoshechkin I., Miller J., Grollman A. P., Johnson F. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J Biol Chem. 1994 May 27;269(21):15318–15324. [PubMed] [Google Scholar]
- Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4690–4694. doi: 10.1073/pnas.88.11.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teebor G. W., Boorstein R. J., Cadet J. The repairability of oxidative free radical mediated damage to DNA: a review. Int J Radiat Biol. 1988 Aug;54(2):131–150. doi: 10.1080/09553008814551591. [DOI] [PubMed] [Google Scholar]
- Tofigh S., Frenkel K. Effect of metals on nucleoside hydroperoxide, a product of ionizing radiation in DNA. Free Radic Biol Med. 1989;7(2):131–143. doi: 10.1016/0891-5849(89)90004-x. [DOI] [PubMed] [Google Scholar]
- Wagner J. R., van Lier J. E., Decarroz C., Berger M., Cadet J. Photodynamic methods for oxy radical-induced DNA damage. Methods Enzymol. 1990;186:502–511. doi: 10.1016/0076-6879(90)86144-k. [DOI] [PubMed] [Google Scholar]
- Wakizaka A., Aiba N., Okuhara E., Kawazoe Y. Production of 5-formyluracil from thymine in an in vitro active oxygen-generating system. Biochem Int. 1987 Feb;14(2):289–295. [PubMed] [Google Scholar]
- Wallace S. S. DNA damages processed by base excision repair: biological consequences. Int J Radiat Biol. 1994 Nov;66(5):579–589. doi: 10.1080/09553009414551661. [DOI] [PubMed] [Google Scholar]
- Zhang Q. M., Fujimoto J., Yonei S. Enzymatic release of 5-formyluracil by mammalian liver extracts from DNA irradiated with ionizing radiation. Int J Radiat Biol. 1995 Dec;68(6):603–607. doi: 10.1080/09553009514551601. [DOI] [PubMed] [Google Scholar]