Abstract
Although asbestos stimulates oxygen radical generation in alveolar macrophages, the exact mechanism is still not clear. The purpose of this study was to compare the ability of three asbestos fibers (amosite, chrysotile, and crocidolite) to generate oxygen radicals in macrophages and examine the mechanism of this action. All asbestos fibers were able to induce chemiluminescence but chrysotile induced maximal chemiluminescence at higher concentrations than amosite and crocidolite. Protein kinase C (PKC) inhibitors (sphingosine and staurosporine) suppressed the ability of asbestos to induce oxygen radical generation. Phospholipase C (PLC) inhibitors (U73122 and neomycin) and protein tyrosine kinase (PTK) inhibitors (erbstatin and genistein) decreased oxygen radical generation of asbestos-stimulated alveolar macrophages. Oxygen radical generation was not suppressed by an adenylate cyclase activator (forskolin), a protein kinase A inhibitor (H-8), and a protein serine-threonine phosphatase inhibitor (okadaic acid). PLC and PTK inhibitors suppressed the increment of phosphoinositide turnover by amosite. These results suggest that asbestos fibers induce the generation of oxygen radicals through PTK, PLC, and PKC pathways in a dose-response pattern.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Case B. W., Ip M. P., Padilla M., Kleinerman J. Asbestos effects on superoxide production. An in vitro study of hamster alveolar macrophages. Environ Res. 1986 Apr;39(2):299–306. doi: 10.1016/s0013-9351(86)80056-1. [DOI] [PubMed] [Google Scholar]
- Cox J. A., Jeng A. Y., Sharkey N. A., Blumberg P. M., Tauber A. I. Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest. 1985 Nov;76(5):1932–1938. doi: 10.1172/JCI112190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghio A. J., Kennedy T. P., Whorton A. R., Crumbliss A. L., Hatch G. E., Hoidal J. R. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. Am J Physiol. 1992 Nov;263(5 Pt 1):L511–L518. doi: 10.1152/ajplung.1992.263.5.L511. [DOI] [PubMed] [Google Scholar]
- Goldman R., Zor U. Activation of macrophage PtdIns-PLC by phorbol ester and vanadate: involvement of reactive oxygen species and tyrosine phosphorylation. Biochem Biophys Res Commun. 1994 Feb 28;199(1):334–338. doi: 10.1006/bbrc.1994.1233. [DOI] [PubMed] [Google Scholar]
- Goodglick L. A., Kane A. B. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res. 1986 Nov;46(11):5558–5566. [PubMed] [Google Scholar]
- Hansen K., Mossman B. T. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987 Mar 15;47(6):1681–1686. [PubMed] [Google Scholar]
- Holian A., Kelley K., Hamilton R. F., Jr Mechanisms associated with human alveolar macrophage stimulation by particulates. Environ Health Perspect. 1994 Dec;102 (Suppl 10):69–74. doi: 10.1289/ehp.94102s1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalla B., Hamilton R. F., Scheule R. K., Holian A. Role of extracellular calcium in chrysotile asbestos stimulation of alveolar macrophages. Toxicol Appl Pharmacol. 1990 Jun 1;104(1):130–138. doi: 10.1016/0041-008x(90)90288-6. [DOI] [PubMed] [Google Scholar]
- Mayer A. M., Brenic S., Stocker R., Glaser K. B. Modulation of superoxide generation in in vivo lipopolysaccharide-primed rat alveolar macrophages by arachidonic acid and inhibitors of protein kinase C, phospholipase A2, protein serine-threonine phosphatase(s), protein tyrosine kinase(s) and phosphatase(s). J Pharmacol Exp Ther. 1995 Jul;274(1):427–436. [PubMed] [Google Scholar]
- Noh D. Y., Shin S. H., Rhee S. G. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim Biophys Acta. 1995 Dec 18;1242(2):99–113. doi: 10.1016/0304-419x(95)00006-0. [DOI] [PubMed] [Google Scholar]
- Roney P. L., Holian A. Possible mechanism of chrysotile asbestos-stimulated superoxide anion production in guinea pig alveolar macrophages. Toxicol Appl Pharmacol. 1989 Aug;100(1):132–144. doi: 10.1016/0041-008x(89)90097-5. [DOI] [PubMed] [Google Scholar]
- Schapira R. M., Ghio A. J., Effros R. M., Morrisey J., Dawson C. A., Hacker A. D. Hydroxyl radicals are formed in the rat lung after asbestos instillation in vivo. Am J Respir Cell Mol Biol. 1994 May;10(5):573–579. doi: 10.1165/ajrcmb.10.5.8179922. [DOI] [PubMed] [Google Scholar]
- Shatos M. A., Doherty J. M., Marsh J. P., Mossman B. T. Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species. Environ Res. 1987 Oct;44(1):103–116. doi: 10.1016/s0013-9351(87)80090-7. [DOI] [PubMed] [Google Scholar]
- Vallyathan V., Mega J. F., Shi X., Dalal N. S. Enhanced generation of free radicals from phagocytes induced by mineral dusts. Am J Respir Cell Mol Biol. 1992 Apr;6(4):404–413. doi: 10.1165/ajrcmb/6.4.404. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Johnston R. B., Jr Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med. 1984 Feb 1;159(2):405–416. doi: 10.1084/jem.159.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]