Abstract
Chronic inhalation bioassays in rodents are used to assess pulmonary carcinogenicity for purposes of hazard identification and potentially for risk characterization. The influence of high experimental doses on tumor development has been recognized for some time and has led to the concept of maximum tolerated dose (MTD) for dose selection, with the highest dose being at the MTD. Exposure at the MTD should ensure that the animals are sufficiently challenged while at the same time the animal's normal longevity is not altered from effects other than carcinogenicity. A characteristic of exposure-dose-response relationships for chronically inhaled particles is that lung tumors are significantly increased only at high exposure levels, and that lung tumors are seen in rats only but not in mice or hamsters. This lung tumor response in rats is thought to be secondary to persistent alveolar inflammation, indicating that the MTD may have been exceeded. Thus, mechanisms of toxicity and carcinogenicity may be dose dependent and may not operate at lower doses that humans normally experience. Despite awareness of this problem, carcinogenicity bioassays that evaluate particulate compounds in rodents have not always been designed with the MTD concept in mind. This is due to several problems associated with determining an appropriate MTD for particle inhalation studies. One requirement for the MTD is that some toxicity should be observed. However, it is difficult to define what degree of toxic response is indicative of the MTD. For particle inhalation studies, various noncancer end points in addition to mortality and body weight gain have been considered as indicators of the MTD, i.e., pulmonary inflammation, increased epithelial cell proliferation, increased lung weight, impairment of particle clearance function, and significant histopathological findings at the end of a subchronic study. However, there is no general agreement about quantification of these end points to define the MTD. To determine whether pulmonary responses are indicative of the MTD, we suggest defining an MTD based on results of a multidose subchronic and chronic inhalation study with a known human particulate carcinogen, e.g., asbestos or crystalline silica. Quantification of effects in such a study using the noncancer end points listed above would identify a dose level without significant signs of toxicity at the end of the subchronic study. If this dose level still results in significant lung tumor incidence at the end of the chronic study. We will have a sound basis for characterizing the MTD and justifying its use in future particle inhalation studies. Also, a better understanding of cellular and molecular mechanisms of particle-induced lung tumors is needed to support the MTD concept.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bozelka B. E., Sestini P., Gaumer H. R., Hammad Y., Heather C. J., Salvaggio J. E. A murine model of asbestosis. Am J Pathol. 1983 Sep;112(3):326–337. [PMC free article] [PubMed] [Google Scholar]
- Bucher J. R., Portier C. J., Goodman J. I., Faustman E. M., Lucier G. W. Workshop overview. National Toxicology Program Studies: principles of dose selection and applications to mechanistic based risk assessment. Fundam Appl Toxicol. 1996 May;31(1):1–8. doi: 10.1006/faat.1996.0070. [DOI] [PubMed] [Google Scholar]
- Buckpitt A., Chang A. M., Weir A., Van Winkle L., Duan X., Philpot R., Plopper C. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Mol Pharmacol. 1995 Jan;47(1):74–81. [PubMed] [Google Scholar]
- Burkhart J. E., McCawley M. A., Wheeler R. W. Particle size distributions in underground coal mines. Am Ind Hyg Assoc J. 1987 Feb;48(2):122–126. doi: 10.1080/15298668791384508. [DOI] [PubMed] [Google Scholar]
- Carlsson L. M., Marklund S. L., Edlund T. The rat extracellular superoxide dismutase dimer is converted to a tetramer by the exchange of a single amino acid. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5219–5222. doi: 10.1073/pnas.93.11.5219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. M., Addison J., Bolton R. E., Donaldson K., Jones A. D., Smith T. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol. 1986 Jun;67(3):415–430. [PMC free article] [PubMed] [Google Scholar]
- Davis J. M., Jones A. D., Miller B. G. Experimental studies in rats on the effects of asbestos inhalation coupled with the inhalation of titanium dioxide or quartz. Int J Exp Pathol. 1991 Oct;72(5):501–525. [PMC free article] [PubMed] [Google Scholar]
- Driscoll K. E., Carter J. M., Howard B. W., Hassenbein D. G., Pepelko W., Baggs R. B., Oberdörster G. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 1996 Feb;136(2):372–380. doi: 10.1006/taap.1996.0045. [DOI] [PubMed] [Google Scholar]
- Driscoll K. E., Deyo L. C., Carter J. M., Howard B. W., Hassenbein D. G., Bertram T. A. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis. 1997 Feb;18(2):423–430. doi: 10.1093/carcin/18.2.423. [DOI] [PubMed] [Google Scholar]
- Driscoll K. E., Hassenbein D. G., Carter J., Poynter J., Asquith T. N., Grant R. A., Whitten J., Purdon M. P., Takigiku R. Macrophage inflammatory proteins 1 and 2: expression by rat alveolar macrophages, fibroblasts, and epithelial cells and in rat lung after mineral dust exposure. Am J Respir Cell Mol Biol. 1993 Mar;8(3):311–318. doi: 10.1165/ajrcmb/8.3.311. [DOI] [PubMed] [Google Scholar]
- Heinrich U., Muhle H., Takenaka S., Ernst H., Fuhst R., Mohr U., Pott F., Stöber W. Chronic effects on the respiratory tract of hamsters, mice and rats after long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J Appl Toxicol. 1986 Dec;6(6):383–395. doi: 10.1002/jat.2550060602. [DOI] [PubMed] [Google Scholar]
- Henderson R. F., Mauderly J. L., Pickrell J. A., Hahn F. F., Muhle H., Rebar A. H. Comparative study of bronchoalveolar lavage fluid: effect of species, age, and method of lavage. Exp Lung Res. 1987;13(3):329–342. doi: 10.3109/01902148709069597. [DOI] [PubMed] [Google Scholar]
- Henderson R. F., Pickrell J. A., Jones R. K., Sun J. D., Benson J. M., Mauderly J. L., McClellan R. O. Response of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue. Fundam Appl Toxicol. 1988 Oct;11(3):546–567. doi: 10.1016/0272-0590(88)90119-4. [DOI] [PubMed] [Google Scholar]
- Hesterberg T. W., Axten C., McConnell E. E., Oberdörster G., Everitt J., Miiller W. C., Chevalier J., Chase G. R., Thevenaz P. Chronic inhalation study of fiber glass and amosite asbestos in hamsters: twelve-month preliminary results. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1223–1229. doi: 10.1289/ehp.97105s51223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. P., Trochimowicz H. J., Reinhardt C. F. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol. 1985 Jun 30;79(2):179–192. doi: 10.1016/0041-008x(85)90339-4. [DOI] [PubMed] [Google Scholar]
- Maronpot R. R., Fox T., Malarkey D. E., Goldsworthy T. L. Mutations in the ras proto-oncogene: clues to etiology and molecular pathogenesis of mouse liver tumors. Toxicology. 1995 Aug 25;101(3):125–156. doi: 10.1016/0300-483x(95)03112-s. [DOI] [PubMed] [Google Scholar]
- Mauderly J. L., Jones R. K., Griffith W. C., Henderson R. F., McClellan R. O. Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation. Fundam Appl Toxicol. 1987 Aug;9(2):208–221. doi: 10.1016/0272-0590(87)90044-3. [DOI] [PubMed] [Google Scholar]
- Morrow P. E., Haseman J. K., Hobbs C. H., Driscoll K. E., Vu V., Oberdörster G. The maximum tolerated dose for inhalation bioassays: toxicity vs overload. Fundam Appl Toxicol. 1996 Feb;29(2):155–167. doi: 10.1006/faat.1996.0017. [DOI] [PubMed] [Google Scholar]
- Morrow P. E. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 1988 Apr;10(3):369–384. doi: 10.1016/0272-0590(88)90284-9. [DOI] [PubMed] [Google Scholar]
- Muhle H., Takenaka S., Mohr U., Dasenbrock C., Mermelstein R. Lung tumor induction upon long-term low-level inhalation of crystalline silica. Am J Ind Med. 1989;15(3):343–346. doi: 10.1002/ajim.4700150309. [DOI] [PubMed] [Google Scholar]
- Oberdörster G., Ferin J., Lehnert B. E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994 Oct;102 (Suppl 5):173–179. doi: 10.1289/ehp.102-1567252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seixas N. S., Hewett P., Robins T. G., Haney R. Variability of particle size-specific fractions of personal coal mine dust exposures. Am Ind Hyg Assoc J. 1995 Mar;56(3):243–250. doi: 10.1080/15428119591017079. [DOI] [PubMed] [Google Scholar]
- Slade R., Stead A. G., Graham J. A., Hatch G. E. Comparison of lung antioxidant levels in humans and laboratory animals. Am Rev Respir Dis. 1985 May;131(5):742–746. doi: 10.1164/arrd.1985.131.5.742. [DOI] [PubMed] [Google Scholar]
- Wagner J. C., Berry G., Skidmore J. W., Timbrell V. The effects of the inhalation of asbestos in rats. Br J Cancer. 1974 Mar;29(3):252–269. doi: 10.1038/bjc.1974.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
