Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Sep;105(Suppl 5):1041–1044. doi: 10.1289/ehp.97105s51041

Can microwave radiation at high temperatures reduce the toxicity of fibrous crocidolite asbestos?

M Gulumian 1, Z L Nkosibomvu 1, K Channa 1, H Pollak 1
PMCID: PMC1470145  PMID: 9400697

Abstract

Exposure of animals and humans to crocidolite asbestos fibers produces fibrosis and two types of cancers: bronchogenic carcinoma and mesothelioma. It is therefore desirable to reduce toxicity of these fibers without affecting their other characteristics. In this study, commercial crocidolite asbestos fibers were radiated with microwave radiation at different temperatures. Radiated fibers and nonradiated original fibers were then studied by Mössbauer spectroscopy to quantify the amount of ferric and ferrous ions present at structurally different sites in each crocidolite sample. They were also studied for their ability to initiate the peroxidation of linoleic acid to assess the effect of radiation on this process. Results showed that microwave radiation reduced the total Fe2+/Fe3+ ratio. This reduction produced a concomitant decrease in the ability of the radiated samples to peroxidize linoleic acid.

Full text

PDF
1041

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonneau L., Suquet H., Malard C., Pezerat H. Studies on surface properties of asbestos. I. Active sites on surface of chrysotile and amphiboles. Environ Res. 1986 Oct;41(1):251–267. doi: 10.1016/s0013-9351(86)80187-6. [DOI] [PubMed] [Google Scholar]
  2. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  3. Fontecave M., Jaouen M., Mansuy D., Costa D., Zalma R., Pezerat H. Microsomal lipid peroxidation and oxy-radicals formation are induced by insoluble iron-containing minerals. Biochem Biophys Res Commun. 1990 Dec 31;173(3):912–918. doi: 10.1016/s0006-291x(05)80872-1. [DOI] [PubMed] [Google Scholar]
  4. Gulumian M., Bhoolia D. J., Du Toit R. S., Rendall R. E., Pollak H., van Wyk J. A., Rhempula M. Activation of UICC crocidolite: the effect of conversion of some ferric ions to ferrous ions. Environ Res. 1993 Feb;60(2):193–206. doi: 10.1006/enrs.1993.1027. [DOI] [PubMed] [Google Scholar]
  5. Gulumian M., van Wyk J. A. Hydroxyl radical production in the presence of fibres by a Fenton-type reaction. Chem Biol Interact. 1987;62(1):89–97. doi: 10.1016/0009-2797(87)90081-0. [DOI] [PubMed] [Google Scholar]
  6. McLaughlin T. C., Miller G. H., Jr The frequency of metabolic evaluation in "stone patients". South Med J. 1967 Dec;60(12):1321–1323. doi: 10.1097/00007611-196712000-00013. [DOI] [PubMed] [Google Scholar]
  7. Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys. 1984 Jan;228(1):373–376. doi: 10.1016/0003-9861(84)90078-x. [DOI] [PubMed] [Google Scholar]
  8. Weitzman S. A., Weitberg A. B. Asbestos-catalysed lipid peroxidation and its inhibition by desferroxamine. Biochem J. 1985 Jan 1;225(1):259–262. doi: 10.1042/bj2250259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. van Kuijk F. J., Thomas D. W., Stephens R. J., Dratz E. A. Gas chromatography-mass spectrometry method for determination of phospholipid peroxides; I. Transesterification to form methyl esters. J Free Radic Biol Med. 1985;1(3):215–225. doi: 10.1016/0748-5514(85)90121-7. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES