Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Sep;105(Suppl 5):1257–1260. doi: 10.1289/ehp.97105s51257

Pleural macrophage recruitment and activation in asbestos-induced pleural injury.

N Choe 1, S Tanaka 1, W Xia 1, D R Hemenway 1, V L Roggli 1, E Kagan 1
PMCID: PMC1470154  PMID: 9400734

Abstract

The pathogenesis of asbestos-induced pleural fibrosis is poorly understood. Moreover, there has been a long-standing controversy regarding the relative potential of different commercial types of asbestos to cause pleural disease. We postulated that inhaled asbestos fibers translocate to the pleural space where they stimulate the recruitment and activation of pleural macrophages. To test this hypothesis, and to determine whether there are differences between inhaled amphibole and serpentine asbestos, Fischer 344 rats were exposed by intermittent inhalation (6 hr/day for 5 days/week over 2 weeks) to either National Institute of Environmental Health Sciences (NIEHS) crocidolite (average concentration 7.55 mg/m3) or NIEHS chrysotile fibers (average concentration 8.51 mg/m3). Comparisons were made with sham-exposed rats. The rats were sacrificed at 1 and 6 weeks after the cessation of exposure. More pleural macrophages were recovered at 1 and 6 weeks after crocidolite and chrysotile exposure than after sham exposure. Small numbers of crocidolite fibers (approximately 1 per 4000 cells) were detected in the pleural cell pellet of one crocidolite-exposed rat by scanning electron microscopy. Pleural macrophage supernatants were assayed for production of nitric oxide (NO) (by the Griess reaction) and tumor necrosis factor alpha (TNF-alpha) (by an enzyme-linked immunosorbent assay method). Significantly greater amounts of NO as well as TNF-alpha were generated by pleural macrophages at 1 and 6 weeks after either crocidolite or chrysotile inhalation than after sham exposure. Conceivably, translocation of asbestos fibers to the pleural space may provide a stimulus for persistent pleural space inflammation, cytokine production, and the generation of toxic oxygen and nitrogen radicals. Enhanced cytokine secretion within the pleural space may in turn upregulate adhesion molecule expression and the synthesis of extracellular matrix constituents by pleural mesothelial cells. Thus, our findings may have significance for the development of asbestos-induced pleural injury.

Full text

PDF
1257

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antony V. B., Hott J. W., Kunkel S. L., Godbey S. W., Burdick M. D., Strieter R. M. Pleural mesothelial cell expression of C-C (monocyte chemotactic peptide) and C-X-C (interleukin 8) chemokines. Am J Respir Cell Mol Biol. 1995 Jun;12(6):581–588. doi: 10.1165/ajrcmb.12.6.7766422. [DOI] [PubMed] [Google Scholar]
  2. Boutin C., Dumortier P., Rey F., Viallat J. R., De Vuyst P. Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Thoracoscopic and mineralogic study. Am J Respir Crit Care Med. 1996 Jan;153(1):444–449. doi: 10.1164/ajrccm.153.1.8542156. [DOI] [PubMed] [Google Scholar]
  3. Boylan A. M., Rüegg C., Kim K. J., Hébert C. A., Hoeffel J. M., Pytela R., Sheppard D., Goldstein I. M., Broaddus V. C. Evidence of a role for mesothelial cell-derived interleukin 8 in the pathogenesis of asbestos-induced pleurisy in rabbits. J Clin Invest. 1992 Apr;89(4):1257–1267. doi: 10.1172/JCI115710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chao C. C., Park S. H., Aust A. E. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys. 1996 Feb 1;326(1):152–157. doi: 10.1006/abbi.1996.0059. [DOI] [PubMed] [Google Scholar]
  5. Dodson R. F., Williams M. G., Jr, Corn C. J., Brollo A., Bianchi C. Asbestos content of lung tissue, lymph nodes, and pleural plaques from former shipyard workers. Am Rev Respir Dis. 1990 Oct;142(4):843–847. doi: 10.1164/ajrccm/142.4.843. [DOI] [PubMed] [Google Scholar]
  6. Freeman B. Free radical chemistry of nitric oxide. Looking at the dark side. Chest. 1994 Mar;105(3 Suppl):79S–84S. doi: 10.1378/chest.105.3_supplement.79s. [DOI] [PubMed] [Google Scholar]
  7. Gibbs A. R., Stephens M., Griffiths D. M., Blight B. J., Pooley F. D. Fibre distribution in the lungs and pleura of subjects with asbestos related diffuse pleural fibrosis. Br J Ind Med. 1991 Nov;48(11):762–770. doi: 10.1136/oem.48.11.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffith D. E., Miller E. J., Gray L. D., Idell S., Johnson A. R. Interleukin-1-mediated release of interleukin-8 by asbestos-stimulated human pleural mesothelial cells. Am J Respir Cell Mol Biol. 1994 Mar;10(3):245–252. doi: 10.1165/ajrcmb.10.3.8117443. [DOI] [PubMed] [Google Scholar]
  9. Hemenway D. R., MacAskill S. M. Design, development and test results of a horizontal flow inhalation toxicology facility. Am Ind Hyg Assoc J. 1982 Dec;43(12):874–879. doi: 10.1080/15298668291410738. [DOI] [PubMed] [Google Scholar]
  10. Kohyama N., Suzuki Y. Analysis of asbestos fibers in lung parenchyma, pleural plaques, and mesothelioma tissues of North American insulation workers. Ann N Y Acad Sci. 1991 Dec 31;643:27–52. doi: 10.1111/j.1749-6632.1991.tb24442.x. [DOI] [PubMed] [Google Scholar]
  11. Kuwahara M., Kagan E. The mesothelial cell and its role in asbestos-induced pleural injury. Int J Exp Pathol. 1995 Jun;76(3):163–170. [PMC free article] [PubMed] [Google Scholar]
  12. Kuwahara M., Kuwahara M., Verma K., Ando T., Hemenway D. R., Kagan E. Asbestos exposure stimulates pleural mesothelial cells to secrete the fibroblast chemoattractant, fibronectin. Am J Respir Cell Mol Biol. 1994 Feb;10(2):167–176. doi: 10.1165/ajrcmb.10.2.8110473. [DOI] [PubMed] [Google Scholar]
  13. Lehnert B. E., Dethloff L. A., Valdez Y. E. Leukocytic responses to the intrapleural deposition of particles, particle-cell associations, and the clearance of particles from the pleural space compartment. J Toxicol Environ Health. 1988;24(1):41–66. doi: 10.1080/15287398809531140. [DOI] [PubMed] [Google Scholar]
  14. Lund L. G., Aust A. E. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis. 1992 Apr;13(4):637–642. doi: 10.1093/carcin/13.4.637. [DOI] [PubMed] [Google Scholar]
  15. Müller J., Yoshida T. Interaction of murine peritoneal leukocytes and mesothelial cells: in vitro model system to survey cellular events on serosal membranes during inflammation. Clin Immunol Immunopathol. 1995 Jun;75(3):231–238. doi: 10.1006/clin.1995.1076. [DOI] [PubMed] [Google Scholar]
  16. Oberdoerster G., Ferin J., Marcello N. L., Meinhold S. H. Effect of intrabronchially instilled amosite on lavagable lung and pleural cells. Environ Health Perspect. 1983 Sep;51:41–47. doi: 10.1289/ehp.835141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Owens M. W., Grimes S. R. Pleural mesothelial cell response to inflammation: tumor necrosis factor-induced mitogenesis and collagen synthesis. Am J Physiol. 1993 Oct;265(4 Pt 1):L382–L388. doi: 10.1152/ajplung.1993.265.4.L382. [DOI] [PubMed] [Google Scholar]
  18. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  19. Rom W. N., Travis W. D., Brody A. R. Cellular and molecular basis of the asbestos-related diseases. Am Rev Respir Dis. 1991 Feb;143(2):408–422. doi: 10.1164/ajrccm/143.2.408. [DOI] [PubMed] [Google Scholar]
  20. Schwartz D. A. New developments in asbestos-induced pleural disease. Chest. 1991 Jan;99(1):191–198. doi: 10.1378/chest.99.1.191. [DOI] [PubMed] [Google Scholar]
  21. Srebro S. H., Roggli V. L., Samsa G. P. Malignant mesothelioma associated with low pulmonary tissue asbestos burdens: a light and scanning electron microscopic analysis of 18 cases. Mod Pathol. 1995 Aug;8(6):614–621. [PubMed] [Google Scholar]
  22. Thomas G., Ando T., Verma K., Kagan E. Asbestos fibers and interferon-gamma up-regulate nitric oxide production in rat alveolar macrophages. Am J Respir Cell Mol Biol. 1994 Dec;11(6):707–715. doi: 10.1165/ajrcmb.11.6.7524571. [DOI] [PubMed] [Google Scholar]
  23. Viallat J. R., Raybuad F., Passarel M., Boutin C. Pleural migration of chrysotile fibers after intratracheal injection in rats. Arch Environ Health. 1986 Sep-Oct;41(5):282–286. doi: 10.1080/00039896.1986.9936697. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES