Abstract
Iron in amphibole asbestos is implicated in the pathogenicity of inhaled fibers. Evidence includes the observation that iron chelators can suppress fiber-induced tissue damage. This is believed to occur via the diminished production of fiber-associated reactive oxygen species. The purpose of this study was to explore possible mechanisms for the reduction of fiber toxicity by iron chelator treatments. We studied changes in the amount and the oxidation states of bulk and surface iron in crocidolite and amosite asbestos that were treated with iron-chelating desferrioxamine, ferrozine, sodium ascorbate, and phosphate buffer solutions. The results have been compared with the ability of the fibers to produce free radicals and decompose hydrogen peroxide in a cell-free system in vitro. We found that chelators can affect the amount of iron at the surface of the asbestos fibers and its valence, and that they can modify the chemical reactivity of these surfaces. However, we found no obvious or direct correlations between fiber reactivity and the amount of iron removed, the amount of iron at the fiber surface, or the oxidation state of surface iron. Our results suggest that surface Fe3+ ions may play a role in fiber-related carboxylate radical formation, and that desferrioxamine and phosphate groups detected at treated fiber surfaces may play a role in diminishing and enhancing, respectively, fiber redox activity. It is proposed that iron mobility in the silicate structure may play a larger role in the chemical reactivity of asbestos than previously assumed.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Faux S. P., Howden P. J., Levy L. S. Iron-dependent formation of 8-hydroxydeoxyguanosine in isolated DNA and mutagenicity in Salmonella typhimurium TA102 induced by crocidolite. Carcinogenesis. 1994 Aug;15(8):1749–1751. doi: 10.1093/carcin/15.8.1749. [DOI] [PubMed] [Google Scholar]
- Fubini B., Mollo L., Giamello E. Free radical generation at the solid/liquid interface in iron containing minerals. Free Radic Res. 1995 Dec;23(6):593–614. doi: 10.3109/10715769509065280. [DOI] [PubMed] [Google Scholar]
- Fubini B. Use of physico-chemical and cell-free assays to evaluate the potential carcinogenicity of fibres. IARC Sci Publ. 1996;(140):35–54. [PubMed] [Google Scholar]
- Ghio A. J., Kennedy T. P., Stonehuerner J. G., Crumbliss A. L., Hoidal J. R. DNA strand breaks following in vitro exposure to asbestos increase with surface-complexed [Fe3+]. Arch Biochem Biophys. 1994 May 15;311(1):13–18. doi: 10.1006/abbi.1994.1202. [DOI] [PubMed] [Google Scholar]
- Gilmour P. S., Beswick P. H., Brown D. M., Donaldson K. Detection of surface free radical activity of respirable industrial fibres using supercoiled phi X174 RF1 plasmid DNA. Carcinogenesis. 1995 Dec;16(12):2973–2979. doi: 10.1093/carcin/16.12.2973. [DOI] [PubMed] [Google Scholar]
- Goodglick L. A., Kane A. B. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res. 1990 Aug 15;50(16):5153–5163. [PubMed] [Google Scholar]
- Graf E., Mahoney J. R., Bryant R. G., Eaton J. W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem. 1984 Mar 25;259(6):3620–3624. [PubMed] [Google Scholar]
- Gulumian M., Bhoolia D. J., Du Toit R. S., Rendall R. E., Pollak H., van Wyk J. A., Rhempula M. Activation of UICC crocidolite: the effect of conversion of some ferric ions to ferrous ions. Environ Res. 1993 Feb;60(2):193–206. doi: 10.1006/enrs.1993.1027. [DOI] [PubMed] [Google Scholar]
- Hardy J. A., Aust A. E. The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks. Carcinogenesis. 1995 Feb;16(2):319–325. doi: 10.1093/carcin/16.2.319. [DOI] [PubMed] [Google Scholar]
- KEBERLE H. THE BIOCHEMISTRY OF DESFERRIOXAMINE AND ITS RELATION TO IRON METABOLISM. Ann N Y Acad Sci. 1964 Oct 7;119:758–768. doi: 10.1111/j.1749-6632.1965.tb54077.x. [DOI] [PubMed] [Google Scholar]
- Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293–315. doi: 10.1016/0891-5849(92)90117-y. [DOI] [PubMed] [Google Scholar]
- Kamp D. W., Israbian V. A., Preusen S. E., Zhang C. X., Weitzman S. A. Asbestos causes DNA strand breaks in cultured pulmonary epithelial cells: role of iron-catalyzed free radicals. Am J Physiol. 1995 Mar;268(3 Pt 1):L471–L480. doi: 10.1152/ajplung.1995.268.3.L471. [DOI] [PubMed] [Google Scholar]
- Kennedy T. P., Dodson R., Rao N. V., Ky H., Hopkins C., Baser M., Tolley E., Hoidal J. R. Dusts causing pneumoconiosis generate .OH and produce hemolysis by acting as Fenton catalysts. Arch Biochem Biophys. 1989 Feb 15;269(1):359–364. doi: 10.1016/0003-9861(89)90118-5. [DOI] [PubMed] [Google Scholar]
- Lambeth D. O., Ericson G. R., Yorek M. A., Ray P. D. Implications for in vitro studies of the autoxidation of ferrous ion and the iron-catalyzed autoxidation of dithiothreitol. Biochim Biophys Acta. 1982 Dec 17;719(3):501–508. doi: 10.1016/0304-4165(82)90239-2. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Iron mobilization from asbestos by chelators and ascorbic acid. Arch Biochem Biophys. 1990 Apr;278(1):61–64. doi: 10.1016/0003-9861(90)90231-m. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis. 1992 Apr;13(4):637–642. doi: 10.1093/carcin/13.4.637. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Mobilization of iron from crocidolite asbestos by certain chelators results in enhanced crocidolite-dependent oxygen consumption. Arch Biochem Biophys. 1991 May 15;287(1):91–96. doi: 10.1016/0003-9861(91)90392-v. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Williams M. G., Dodson R. F., Aust A. E. Iron associated with asbestos bodies is responsible for the formation of single strand breaks in phi X174 RFI DNA. Occup Environ Med. 1994 Mar;51(3):200–204. doi: 10.1136/oem.51.3.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyer V. D., Cistulli C. A., Vaslet C. A., Kane A. B. Oxygen radicals and asbestos carcinogenesis. Environ Health Perspect. 1994 Dec;102 (Suppl 10):131–136. doi: 10.1289/ehp.94102s10131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schapira R. M., Ghio A. J., Effros R. M., Morrisey J., Dawson C. A., Hacker A. D. Hydroxyl radicals are formed in the rat lung after asbestos instillation in vivo. Am J Respir Cell Mol Biol. 1994 May;10(5):573–579. doi: 10.1165/ajrcmb.10.5.8179922. [DOI] [PubMed] [Google Scholar]
- Turver C. J., Brown R. C. The role of catalytic iron in asbestos induced lipid peroxidation and DNA-strand breakage in C3H10T1/2 cells. Br J Cancer. 1987 Aug;56(2):133–136. doi: 10.1038/bjc.1987.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallyathan V., Mega J. F., Shi X., Dalal N. S. Enhanced generation of free radicals from phagocytes induced by mineral dusts. Am J Respir Cell Mol Biol. 1992 Apr;6(4):404–413. doi: 10.1165/ajrcmb/6.4.404. [DOI] [PubMed] [Google Scholar]
- Weitzman S. A., Chester J. F., Graceffa P. Binding of deferoxamine to asbestos fibers in vitro and in vivo. Carcinogenesis. 1988 Sep;9(9):1643–1645. doi: 10.1093/carcin/9.9.1643. [DOI] [PubMed] [Google Scholar]
- Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys. 1984 Jan;228(1):373–376. doi: 10.1016/0003-9861(84)90078-x. [DOI] [PubMed] [Google Scholar]
- Weitzman S. A., Weitberg A. B. Asbestos-catalysed lipid peroxidation and its inhibition by desferroxamine. Biochem J. 1985 Jan 1;225(1):259–262. doi: 10.1042/bj2250259. [DOI] [PMC free article] [PubMed] [Google Scholar]
