Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Sep;105(Suppl 5):1037–1040. doi: 10.1289/ehp.97105s51037

Demonstration of nitric oxide on asbestos and silicon carbide fibers with a new ultraviolet spectrophotometric assay.

P Leanderson 1, V Lagesson 1, C Tagesson 1
PMCID: PMC1470179  PMID: 9400696

Abstract

Nitric oxide (NO) has a number of important functions in biological systems and may play a role in the toxicity of mineral fibers. We investigated whether NO might be present on the surface of mineral fibers and if crocidolite could adsorb NO from NO gas or cigarette smoke. NO was determined with a new gas chromatography-ultraviolet spectrophotometric technique after thermal desorption from the fiber surface and injection in a gas flow cell. NO was found in different amounts on chrysotile B, crocidolite, amosite, and silicon carbide whiskers. There was a strong correlation between the amount of NO and the specific surface area of these fibers (r = 0.98). NO could not be demonstrated on rockwool fibers [man-made vitreous fiber(s) (MMVF)21 and MMVF22] or silicon nitride whiskers. NO on crocidolite, amosite, and silicon carbide whiskers was readily desorbed from the fibers at increased temperature, while NO on chrysotile B seemed to be more firmly adsorbed to the fiber and required a longer period of time to be desorbed. The amount of NO bound to crocidolite increased from 34 micrograms/g fiber to 85 and 474 micrograms/g after exposing the fibers to cigarette smoke and NO gas, respectively. These findings indicate that a) NO adsorbs to fiber surfaces, b) some fibers adsorb more NO than others, c) some fibers adsorb NO more strongly than others, and d) the amounts of NO on fibers may be increased after exposure of the fiber to cigarette smoke or other sources of NO. The biological significance of NO on mineral fibers remains to be investigated.

Full text

PDF
1037

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asahi M., Fujii J., Suzuki K., Seo H. G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem. 1995 Sep 8;270(36):21035–21039. doi: 10.1074/jbc.270.36.21035. [DOI] [PubMed] [Google Scholar]
  2. Brown R. C., Hoskins J. A., Miller K., Mossman B. T. Pathogenetic mechanisms of asbestos and other mineral fibres. Mol Aspects Med. 1990;11(5):325–349. doi: 10.1016/0098-2997(90)90002-j. [DOI] [PubMed] [Google Scholar]
  3. Chao C. C., Park S. H., Aust A. E. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys. 1996 Feb 1;326(1):152–157. doi: 10.1006/abbi.1996.0059. [DOI] [PubMed] [Google Scholar]
  4. Chen F., Kuhn D. C., Sun S. C., Gaydos L. J., Demers L. M. Dependence and reversal of nitric oxide production on NF-kappa B in silica and lipopolysaccharide-induced macrophages. Biochem Biophys Res Commun. 1995 Sep 25;214(3):839–846. doi: 10.1006/bbrc.1995.2363. [DOI] [PubMed] [Google Scholar]
  5. Drapier J. C., Bouton C. Modulation by nitric oxide of metalloprotein regulatory activities. Bioessays. 1996 Jul;18(7):549–556. doi: 10.1002/bies.950180706. [DOI] [PubMed] [Google Scholar]
  6. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ischiropoulos H., al-Mehdi A. B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 1995 May 15;364(3):279–282. doi: 10.1016/0014-5793(95)00307-u. [DOI] [PubMed] [Google Scholar]
  8. Jones A. W., Lagesson V., Tagesson C. Determination of isoprene in human breath by thermal desorption gas chromatography with ultraviolet detection. J Chromatogr B Biomed Appl. 1995 Oct 6;672(1):1–6. doi: 10.1016/0378-4347(95)00207-y. [DOI] [PubMed] [Google Scholar]
  9. Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293–315. doi: 10.1016/0891-5849(92)90117-y. [DOI] [PubMed] [Google Scholar]
  10. Kanner J., Harel S., Granit R. Nitric oxide as an antioxidant. Arch Biochem Biophys. 1991 Aug 15;289(1):130–136. doi: 10.1016/0003-9861(91)90452-o. [DOI] [PubMed] [Google Scholar]
  11. Lund L. G., Aust A. E. Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos. Biofactors. 1991 Jun;3(2):83–89. [PubMed] [Google Scholar]
  12. Ohki K., Yoshida K., Hagiwara M., Harada T., Takamura M., Ohashi T., Matsuda H., Imaki J. Nitric oxide induces c-fos gene expression via cyclic AMP response element binding protein (CREB) phosphorylation in rat retinal pigment epithelium. Brain Res. 1995 Oct 23;696(1-2):140–144. doi: 10.1016/0006-8993(95)00914-c. [DOI] [PubMed] [Google Scholar]
  13. Salgo M. G., Bermúdez E., Squadrito G. L., Pryor W. A. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]. Arch Biochem Biophys. 1995 Oct 1;322(2):500–505. doi: 10.1006/abbi.1995.1493. [DOI] [PubMed] [Google Scholar]
  14. Stamler J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994 Sep 23;78(6):931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
  15. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  16. Van der Vliet A., Smith D., O'Neill C. A., Kaur H., Darley-Usmar V., Cross C. E., Halliwell B. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J. 1994 Oct 1;303(Pt 1):295–301. doi: 10.1042/bj3030295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. White A. C., Maloney E. K., Boustani M. R., Hassoun P. M., Fanburg B. L. Nitric oxide increases cellular glutathione levels in rat lung fibroblasts. Am J Respir Cell Mol Biol. 1995 Oct;13(4):442–448. doi: 10.1165/ajrcmb.13.4.7546774. [DOI] [PubMed] [Google Scholar]
  18. Wink D. A., Hanbauer I., Krishna M. C., DeGraff W., Gamson J., Mitchell J. B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813–9817. doi: 10.1073/pnas.90.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996 Jan 1;313(Pt 1):17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. deRojas-Walker T., Tamir S., Ji H., Wishnok J. S., Tannenbaum S. R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol. 1995 Apr-May;8(3):473–477. doi: 10.1021/tx00045a020. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES