Abstract
The recently cloned Saccharomyces cerevisiae MMS19 gene appears to be involved in both nucleotide excision repair (NER) and transcription, which is also the case for components of the NER/transcription complex TFIIH. Unlike TFIIH however, the Mms19 protein does not affect NER in a highly purified in vitro system. In order to investigate the role of Mms19 in NER, we have analysed the repair capacity of the mms19 disruption mutant. We find that a cell-free extract of this mutant is deficient for NER in vitro. Since mms19 mutants are only moderately sensitive to irradiation with ultraviolet (UV) light, it is possible that such mutants are specifically deficient in one of the two modes of NER, i.e. transcription-coupled or global genome repair. To investigate this possibility, we have analysed the removal of cyclobutane-pyrimidine dimers (CPDs) at the nucleotide level in an mms19 mutant. Repair of CPDs was not detectable for both transcribed and non-transcribed sequences in this mutant, demonstrating a requirement for Mms19 in both transcription-coupled and global genome repair. Our data, combined with those obtained by others, suggest that Mms19 is required for NER in yeast, although it seems likely that the protein plays an indirect role in this process.
Full Text
The Full Text of this article is available as a PDF (273.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboussekhra A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protić M., Hübscher U., Egly J. M., Wood R. D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995 Mar 24;80(6):859–868. doi: 10.1016/0092-8674(95)90289-9. [DOI] [PubMed] [Google Scholar]
- Guzder S. N., Habraken Y., Sung P., Prakash L., Prakash S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem. 1995 Jun 2;270(22):12973–12976. doi: 10.1074/jbc.270.22.12973. [DOI] [PubMed] [Google Scholar]
- He Z., Wong J. M., Maniar H. S., Brill S. J., Ingles C. J. Assessing the requirements for nucleotide excision repair proteins of Saccharomyces cerevisiae in an in vitro system. J Biol Chem. 1996 Nov 8;271(45):28243–28249. doi: 10.1074/jbc.271.45.28243. [DOI] [PubMed] [Google Scholar]
- Hoeijmakers J. H., Egly J. M., Vermeulen W. TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev. 1996 Feb;6(1):26–33. doi: 10.1016/s0959-437x(96)90006-4. [DOI] [PubMed] [Google Scholar]
- Lauder S., Bankmann M., Guzder S. N., Sung P., Prakash L., Prakash S. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol. 1996 Dec;16(12):6783–6793. doi: 10.1128/mcb.16.12.6783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manivasakam P., Weber S. C., McElver J., Schiestl R. H. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 1995 Jul 25;23(14):2799–2800. doi: 10.1093/nar/23.14.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCready S. Repair of 6-4 photoproducts and cyclobutane pyrimidine dimers in rad mutants of Saccharomyces cerevisiae. Mutat Res. 1994 Nov;315(3):261–273. doi: 10.1016/0921-8777(94)90037-x. [DOI] [PubMed] [Google Scholar]
- Mu D., Park C. H., Matsunaga T., Hsu D. S., Reardon J. T., Sancar A. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995 Feb 10;270(6):2415–2418. doi: 10.1074/jbc.270.6.2415. [DOI] [PubMed] [Google Scholar]
- Prakash L., Prakash S. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol Gen Genet. 1979 Nov;176(3):351–359. doi: 10.1007/BF00333097. [DOI] [PubMed] [Google Scholar]
- Selby C. P., Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993 Apr 2;260(5104):53–58. doi: 10.1126/science.8465200. [DOI] [PubMed] [Google Scholar]
- Sweder K. S., Chun R., Mori T., Hanawalt P. C. DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast. Nucleic Acids Res. 1996 Apr 15;24(8):1540–1546. doi: 10.1093/nar/24.8.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweder K. S., Hanawalt P. C. The COOH terminus of suppressor of stem loop (SSL2/RAD25) in yeast is essential for overall genomic excision repair and transcription-coupled repair. J Biol Chem. 1994 Jan 21;269(3):1852–1857. [PubMed] [Google Scholar]
- Tijsterman M., Tasseron-de Jong J. G., van de Putte P., Brouwer J. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution. Nucleic Acids Res. 1996 Sep 15;24(18):3499–3506. doi: 10.1093/nar/24.18.3499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tijsterman M., Verhage R. A., van de Putte P., Tasseron-de Jong J. G., Brouwer J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8027–8032. doi: 10.1073/pnas.94.15.8027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhage R. A., Zeeman A. M., Lombaerts M., van de Putte P., Brouwer J. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant. Mutat Res. 1996 Feb 15;362(2):155–165. doi: 10.1016/0921-8777(95)00045-3. [DOI] [PubMed] [Google Scholar]
- Verhage R. A., van Gool A. J., de Groot N., Hoeijmakers J. H., van de Putte P., Brouwer J. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Mol Cell Biol. 1996 Feb;16(2):496–502. doi: 10.1128/mcb.16.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhage R., Zeeman A. M., de Groot N., Gleig F., Bang D. D., van de Putte P., Brouwer J. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Sep;14(9):6135–6142. doi: 10.1128/mcb.14.9.6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Wei S., Reed S. H., Wu X., Svejstrup J. Q., Feaver W. J., Kornberg R. D., Friedberg E. C. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol. 1997 Feb;17(2):635–643. doi: 10.1128/mcb.17.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Wu X., Friedberg E. C. A yeast whole cell extract supports nucleotide excision repair and RNA polymerase II transcription in vitro. Mutat Res. 1996 Sep 2;364(1):33–41. doi: 10.1016/0921-8777(96)00019-5. [DOI] [PubMed] [Google Scholar]
- Wood R. D., Robins P., Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell. 1988 Apr 8;53(1):97–106. doi: 10.1016/0092-8674(88)90491-6. [DOI] [PubMed] [Google Scholar]
- van Gool A. J., Verhage R., Swagemakers S. M., van de Putte P., Brouwer J., Troelstra C., Bootsma D., Hoeijmakers J. H. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994 Nov 15;13(22):5361–5369. doi: 10.1002/j.1460-2075.1994.tb06871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]