Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 1;25(21):4235–4239. doi: 10.1093/nar/25.21.4235

Molecular cloning of four novel murine ribonuclease genes: unusual expansion within the ribonuclease A gene family.

D Batten 1, K D Dyer 1, J B Domachowske 1, H F Rosenberg 1
PMCID: PMC147033  PMID: 9336452

Abstract

We have characterized four novel murine ribonuclease genes that, together with the murine eosinophil-associated ribonucleases 1 and 2, form a distinct and unusual cluster within the RNase A gene superfamily. Three of these genes (mR-3, mR-4, mR-5) include complete open reading frames, encoding ribonucleases with eight cysteines and appropriately spaced histidines (His11 and His124) and lysine (Lys35) that are characteristic of this enlarging protein family; the fourth sequence encodes a non-functional pseudogene (mR-6P). Although the amino acid sequence similarities among these murine ribonucleases varies from 60 to 94%, they form a unique cluster, as each sequence is found to be more closely related to another of this group than to either murine angiogenin or to murine pancreatic ribonuclease. Interestingly, the relationship between the six genes in this 'mR cluster' and the defined lineages of the RNase A gene family could not be determined by amino acid sequence homology, suggesting the possibility that there are one or more additional ribonuclease lineages that have yet to be defined. Although the nature of the evolutionary constraints promoting this unusual expansion and diversification remain unclear, the implications with respect to function are intriguing.

Full Text

The Full Text of this article is available as a PDF (140.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beintema J. J., Hofsteenge J., Iwama M., Morita T., Ohgi K., Irie M., Sugiyama R. H., Schieven G. L., Dekker C. A., Glitz D. G. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry. 1988 Jun 14;27(12):4530–4538. doi: 10.1021/bi00412a046. [DOI] [PubMed] [Google Scholar]
  2. Confalone E., Beintema J. J., Sasso M. P., Carsana A., Palmieri M., Vento M. T., Furia A. Molecular evolution of genes encoding ribonucleases in ruminant species. J Mol Evol. 1995 Dec;41(6):850–858. doi: 10.1007/BF00173164. [DOI] [PubMed] [Google Scholar]
  3. Domachowske J. B., Rosenberg H. F. Eosinophils inhibit retroviral transduction of human target cells by a ribonuclease-dependent mechanism. J Leukoc Biol. 1997 Sep;62(3):363–368. doi: 10.1002/jlb.62.3.363. [DOI] [PubMed] [Google Scholar]
  4. Futami J., Tsushima Y., Murato Y., Tada H., Sasaki J., Seno M., Yamada H. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol. 1997 Apr;16(4):413–419. doi: 10.1089/dna.1997.16.413. [DOI] [PubMed] [Google Scholar]
  5. Iwama M., Sanda A., Ohgi K., Hofsteenge J., Irie M. Purification and primary structure of a porcine kidney non-secretory ribonuclease. Biosci Biotechnol Biochem. 1993 Dec;57(12):2133–2138. doi: 10.1271/bbb.57.2133. [DOI] [PubMed] [Google Scholar]
  6. Larson K. A., Olson E. V., Madden B. J., Gleich G. J., Lee N. A., Lee J. J. Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12370–12375. doi: 10.1073/pnas.93.22.12370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Moroianu J., Riordan J. F. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1677–1681. doi: 10.1073/pnas.91.5.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nakajima-Iijima S., Hamada H., Reddy P., Kakunaga T. Molecular structure of the human cytoplasmic beta-actin gene: interspecies homology of sequences in the introns. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6133–6137. doi: 10.1073/pnas.82.18.6133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Palmieri M., Carsana A., Furia A., Libonati M. Sequence analysis of a cloned cDNA coding for bovine seminal ribonuclease. Eur J Biochem. 1985 Oct 15;152(2):275–277. doi: 10.1111/j.1432-1033.1985.tb09194.x. [DOI] [PubMed] [Google Scholar]
  10. Rosenberg H. F., Dyer K. D. Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem. 1995 Sep 15;270(37):21539–21544. doi: 10.1074/jbc.270.37.21539. [DOI] [PubMed] [Google Scholar]
  11. Rosenberg H. F., Dyer K. D. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res. 1995 Nov 11;23(21):4290–4295. doi: 10.1093/nar/23.21.4290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosenberg H. F., Dyer K. D. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res. 1996 Sep 15;24(18):3507–3513. doi: 10.1093/nar/24.18.3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenberg H. F., Dyer K. D., Tiffany H. L., Gonzalez M. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet. 1995 Jun;10(2):219–223. doi: 10.1038/ng0695-219. [DOI] [PubMed] [Google Scholar]
  14. Sasso M. P., Carsana A., Confalone E., Cosi C., Sorrentino S., Viola M., Palmieri M., Russo E., Furia A. Molecular cloning of the gene encoding the bovine brain ribonuclease and its expression in different regions of the brain. Nucleic Acids Res. 1991 Dec 11;19(23):6469–6474. doi: 10.1093/nar/19.23.6469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seno M., Futami J., Tsushima Y., Akutagawa K., Kosaka M., Tada H., Yamada H. Molecular cloning and expression of human ribonuclease 4 cDNA. Biochim Biophys Acta. 1995 Apr 26;1261(3):424–426. doi: 10.1016/0167-4781(95)00040-n. [DOI] [PubMed] [Google Scholar]
  16. Sorrentino S., Libonati M. Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett. 1997 Mar 3;404(1):1–5. doi: 10.1016/s0014-5793(97)00086-0. [DOI] [PubMed] [Google Scholar]
  17. Sorrentino S., Tucker G. K., Glitz D. G. Purification and characterization of a ribonuclease from human liver. J Biol Chem. 1988 Nov 5;263(31):16125–16131. [PubMed] [Google Scholar]
  18. Vallee B. L., Riordan J. F. Chemical and biochemical properties of human angiogenin. Adv Exp Med Biol. 1988;234:41–53. doi: 10.1007/978-1-4757-1980-2_4. [DOI] [PubMed] [Google Scholar]
  19. Watanabe H., Katoh H., Ishii M., Komoda Y., Sanda A., Takizawa Y., Ohgi K., Irie M. Primary structure of a ribonuclease from bovine brain. J Biochem. 1988 Dec;104(6):939–945. doi: 10.1093/oxfordjournals.jbchem.a122587. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES