Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 1;25(21):4209–4218. doi: 10.1093/nar/25.21.4209

An efficient protocol for linker scanning mutagenesis: analysis of the translational regulation of an Escherichia coli RNA polymerase subunit gene.

D M Dykxhoorn 1, R St Pierre 1, O Van Ham 1, T Linn 1
PMCID: PMC147035  PMID: 9336448

Abstract

A protocol has been developed that is capable of saturating regions hundreds of basepairs in length with linker scanning mutations. The efficacy of this method stems from the design of the linker scanning mutagenesis (LSM) cassette which is composed of a selectable marker flanked by two oligonucleotides, each of which contains a recognition site for a different restriction endonuclease. The cleavage site for one endonuclease is within its recognition site, while the second endonuclease cleaves in the target DNA beyond the end of the cassette. Digestion with these endonucleases and subsequent ligation results in the replacement of 12 bp of the original target sequence with 12 bp of the linker scanning oligonucleotide. We have used this protocol to mutagenize a span of approximately 400 bp surrounding the start site of the gene for the beta subunit (rpoB) of Escherichia coli RNA polymerase. The translation of the beta mRNA has been shown previously to be regulated by the intracellular concentration of either beta or beta'. Analysis of the linker scanning mutations indicates that sequences extending a considerable distance both upstream and downstream of the start site are required for normal translation. Also a site that appears to be involved in translational repression by excess beta' has been identified.

Full Text

The Full Text of this article is available as a PDF (183.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry G., Squires C., Squires C. L. Attenuation and processing of RNA from the rplJL--rpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3331–3335. doi: 10.1073/pnas.77.6.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell V. W., Jackson D. A. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem. 1980 Apr 25;255(8):3726–3735. [PubMed] [Google Scholar]
  3. Cole J. R., Nomura M. Changes in the half-life of ribosomal protein messenger RNA caused by translational repression. J Mol Biol. 1986 Apr 5;188(3):383–392. doi: 10.1016/0022-2836(86)90162-2. [DOI] [PubMed] [Google Scholar]
  4. Downing W. L., Dennis P. P. Transcription products from the rplKAJL-rpoBC gene cluster. J Mol Biol. 1987 Apr 20;194(4):609–620. doi: 10.1016/0022-2836(87)90238-5. [DOI] [PubMed] [Google Scholar]
  5. Dykxhoorn D. M., St Pierre R., Linn T. A set of compatible tac promoter expression vectors. Gene. 1996 Oct 24;177(1-2):133–136. doi: 10.1016/0378-1119(96)00289-2. [DOI] [PubMed] [Google Scholar]
  6. Dykxhoorn D. M., St Pierre R., Linn T. Synthesis of the beta and beta' subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms. Mol Microbiol. 1996 Feb;19(3):483–493. doi: 10.1046/j.1365-2958.1996.384913.x. [DOI] [PubMed] [Google Scholar]
  7. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  8. Haltiner M., Kempe T., Tjian R. A novel strategy for constructing clustered point mutations. Nucleic Acids Res. 1985 Feb 11;13(3):1015–1025. doi: 10.1093/nar/13.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heffron F., So M., McCarthy B. J. In vitro mutagenesis of a circular DNA molecule by using synthetic restriction sites. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6012–6016. doi: 10.1073/pnas.75.12.6012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoopes B. C., McClure W. R. Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Res. 1981 Oct 24;9(20):5493–5504. doi: 10.1093/nar/9.20.5493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990 Nov 30;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p. [DOI] [PubMed] [Google Scholar]
  12. Linn T., Ralling G. A versatile multiple- and single-copy vector system for the in vitro construction of transcriptional fusions to lacZ. Plasmid. 1985 Sep;14(2):134–142. doi: 10.1016/0147-619x(85)90073-3. [DOI] [PubMed] [Google Scholar]
  13. Linn T., St Pierre R. Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol. 1990 Feb;172(2):1077–1084. doi: 10.1128/jb.172.2.1077-1084.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCarthy J. E., Brimacombe R. Prokaryotic translation: the interactive pathway leading to initiation. Trends Genet. 1994 Nov;10(11):402–407. doi: 10.1016/0168-9525(94)90057-4. [DOI] [PubMed] [Google Scholar]
  15. McKnight S. L., Kingsbury R. Transcriptional control signals of a eukaryotic protein-coding gene. Science. 1982 Jul 23;217(4557):316–324. doi: 10.1126/science.6283634. [DOI] [PubMed] [Google Scholar]
  16. Moyle H., Waldburger C., Susskind M. M. Hierarchies of base pair preferences in the P22 ant promoter. J Bacteriol. 1991 Mar;173(6):1944–1950. doi: 10.1128/jb.173.6.1944-1950.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Passador L., Linn T. An internal region of rpoB is required for autogenous translational regulation of the beta subunit of Escherichia coli RNA polymerase. J Bacteriol. 1992 Nov;174(22):7174–7179. doi: 10.1128/jb.174.22.7174-7179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Passador L., Linn T. Autogenous regulation of the RNA polymerase beta subunit of Escherichia coli occurs at the translational level in vivo. J Bacteriol. 1989 Nov;171(11):6234–6242. doi: 10.1128/jb.171.11.6234-6242.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Passador L., Linn T. Mapping of sequences required for the translation of the beta subunit of Escherichia coli RNA polymerase. Can J Microbiol. 1997 Sep;43(9):819–826. doi: 10.1139/m97-119. [DOI] [PubMed] [Google Scholar]
  20. Santos M. A. An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res. 1991 Oct 11;19(19):5442–5442. doi: 10.1093/nar/19.19.5442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith M. In vitro mutagenesis. Annu Rev Genet. 1985;19:423–462. doi: 10.1146/annurev.ge.19.120185.002231. [DOI] [PubMed] [Google Scholar]
  22. St Pierre R., Linn T. A refined vector system for the in vitro construction of single-copy transcriptional or translational fusions to lacZ. Gene. 1996 Feb 22;169(1):65–68. doi: 10.1016/0378-1119(95)00787-3. [DOI] [PubMed] [Google Scholar]
  23. Steward K. L., Linn T. In vivo analysis of overlapping transcription units in the rplKAJLrpoBC ribosomal protein-RNA polymerase gene cluster of Escherichia coli. J Mol Biol. 1991 Mar 5;218(1):23–31. doi: 10.1016/0022-2836(91)90870-c. [DOI] [PubMed] [Google Scholar]
  24. Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zengel J. M., Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog Nucleic Acid Res Mol Biol. 1994;47:331–370. doi: 10.1016/s0079-6603(08)60256-1. [DOI] [PubMed] [Google Scholar]
  26. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES