Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 1;25(21):4224–4229. doi: 10.1093/nar/25.21.4224

Prokaryotic 5'-3' exonucleases share a common core structure with gamma-delta resolvase.

P J Artymiuk 1, T A Ceska 1, D Suck 1, J R Sayers 1
PMCID: PMC147050  PMID: 9336450

Abstract

The three dimensional crystal structure of T5 5'-3' exonuclease was compared with that of two other members of the 5'-3' exonuclease family: T4 ribonuclease H and the N-terminal domain of Thermus aquaticus DNA polymerase I. Though these structures were largely similar, some regions of these enzymes show evidence of significant molecular flexibility. Previous sequence analysis had suggested the existence of a helix-hairpin-helix motif in T5 exonuclease, but a distinct, though related structure is actually found to occur. The entire T5 exonuclease structure was then compared with all the structures in the complete Protein Data Bank and an unexpected similarity with gamma-delta (gamma delta) resolvase was observed. 5'-3' exonucleases and gamma delta resolvase are enzymes involved in carrying out quite different manipulations on nucleic acids. They appear to be unrelated at the primary sequence level, yet the fold of the entire catalytic domain of gamma delta resolvase is contained within that of the 5'-3'exonuclease. Different large-scale helical structures are used by both families to form DNA binding sites.

Full Text

The Full Text of this article is available as a PDF (259.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Boocock M. R., Zhu X., Grindley N. D. Catalytic residues of gamma delta resolvase act in cis. EMBO J. 1995 Oct 16;14(20):5129–5140. doi: 10.1002/j.1460-2075.1995.tb00195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ceska T. A., Sayers J. R., Stier G., Suck D. A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease. Nature. 1996 Jul 4;382(6586):90–93. doi: 10.1038/382090a0. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doherty A. J., Serpell L. C., Ponting C. P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 1996 Jul 1;24(13):2488–2497. doi: 10.1093/nar/24.13.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flores T. P., Moss D. S., Thornton J. M. An algorithm for automatically generating protein topology cartoons. Protein Eng. 1994 Jan;7(1):31–37. doi: 10.1093/protein/7.1.31. [DOI] [PubMed] [Google Scholar]
  7. Grindley H. M., Artymiuk P. J., Rice D. W., Willett P. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J Mol Biol. 1993 Feb 5;229(3):707–721. doi: 10.1006/jmbi.1993.1074. [DOI] [PubMed] [Google Scholar]
  8. Gutman P. D., Minton K. W. Conserved sites in the 5'-3' exonuclease domain of Escherichia coli DNA polymerase. Nucleic Acids Res. 1993 Sep 11;21(18):4406–4407. doi: 10.1093/nar/21.18.4406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hatfull G. F., Grindley N. D. Analysis of gamma delta resolvase mutants in vitro: evidence for an interaction between serine-10 of resolvase and site I of res. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5429–5433. doi: 10.1073/pnas.83.15.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hughes R. E., Hatfull G. F., Rice P., Steitz T. A., Grindley N. D. Cooperativity mutants of the gamma delta resolvase identify an essential interdimer interaction. Cell. 1990 Dec 21;63(6):1331–1338. doi: 10.1016/0092-8674(90)90428-h. [DOI] [PubMed] [Google Scholar]
  11. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  12. Kim Y., Eom S. H., Wang J., Lee D. S., Suh S. W., Steitz T. A. Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17;376(6541):612–616. doi: 10.1038/376612a0. [DOI] [PubMed] [Google Scholar]
  13. Lyamichev V., Brow M. A., Dahlberg J. E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 1993 May 7;260(5109):778–783. doi: 10.1126/science.7683443. [DOI] [PubMed] [Google Scholar]
  14. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  15. Mueser T. C., Nossal N. G., Hyde C. C. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell. 1996 Jun 28;85(7):1101–1112. doi: 10.1016/s0092-8674(00)81310-0. [DOI] [PubMed] [Google Scholar]
  16. Paul A. V., Lehman I. R. The deoxyribonucleases of Escherichia coli. VII. A deoxyribonuclease induced by infection with phage T-5. J Biol Chem. 1966 Jul 25;241(14):3441–3451. [PubMed] [Google Scholar]
  17. Reed R. R. Transposon-mediated site-specific recombination: a defined in vitro system. Cell. 1981 Sep;25(3):713–719. doi: 10.1016/0092-8674(81)90178-1. [DOI] [PubMed] [Google Scholar]
  18. Rice P. A., Steitz T. A. Refinement of gamma delta resolvase reveals a strikingly flexible molecule. Structure. 1994 May 15;2(5):371–384. doi: 10.1016/s0969-2126(00)00039-3. [DOI] [PubMed] [Google Scholar]
  19. Sanderson M. R., Freemont P. S., Rice P. A., Goldman A., Hatfull G. F., Grindley N. D., Steitz T. A. The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase at 2.7 A resolution. Cell. 1990 Dec 21;63(6):1323–1329. doi: 10.1016/0092-8674(90)90427-g. [DOI] [PubMed] [Google Scholar]
  20. Sayers J. R., Eckstein F. Properties of overexpressed phage T5 D15 exonuclease. Similarities with Escherichia coli DNA polymerase I 5'-3' exonuclease. J Biol Chem. 1990 Oct 25;265(30):18311–18317. [PubMed] [Google Scholar]
  21. Thayer M. M., Ahern H., Xing D., Cunningham R. P., Tainer J. A. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 1995 Aug 15;14(16):4108–4120. doi: 10.1002/j.1460-2075.1995.tb00083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yang W., Steitz T. A. Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell. 1995 Jul 28;82(2):193–207. doi: 10.1016/0092-8674(95)90307-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES