Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 1;25(21):4173–4180. doi: 10.1093/nar/25.21.4173

Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals.

T R Bürglin 1
PMCID: PMC147054  PMID: 9336443

Abstract

A new Caenorhabditis elegans homeobox gene, ceh-25, is described that belongs to the TALE superclass of atypical homeodomains, which are characterized by three extra residues between helix 1 and helix 2. ORF and PCR analysis revealed a novel type of alternative splicing within the homeobox. The alternative splicing occurs such that two different homeodomains can be generated, which differ in their first 25 amino acids. ceh-25 is an orthologue of the vertebrate Meis genes and it shares a new conserved domain of 130 amino acids with them. A thorough analysis of all TALE homeobox genes was performed and a new classification is presented. Four TALE classes are identified in animals: PBC, MEIS, TGIF and IRO (Iroquois); two types in fungi: the mating type genes (M-ATYP) and the CUP genes; and two types in plants: KNOX and BEL. The IRO class has a new conserved motif downstream of the homeodomain. For the KNOX class, a conserved domain, the KNOX domain, was defined upstream of the homeodomain. Comparison of the KNOX domain and the MEIS domain shows significant sequence similarity revealing the existence of an archetypal group of homeobox genes that encode two associated conserved domains. Thus TALE homeobox genes were already present in the common ancestor of plants, fungi and animals and represent a branch distinct from the typical homeobox genes.

Full Text

The Full Text of this article is available as a PDF (639.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Astell C. R., Ahlstrom-Jonasson L., Smith M., Tatchell K., Nasmyth K. A., Hall B. D. The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell. 1981 Nov;27(1 Pt 2):15–23. doi: 10.1016/0092-8674(81)90356-1. [DOI] [PubMed] [Google Scholar]
  3. Bertolino E., Reimund B., Wildt-Perinic D., Clerc R. G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 1995 Dec 29;270(52):31178–31188. doi: 10.1074/jbc.270.52.31178. [DOI] [PubMed] [Google Scholar]
  4. Bürglin T. R., Ruvkun G. New motif in PBX genes. Nat Genet. 1992 Aug;1(5):319–320. doi: 10.1038/ng0892-319. [DOI] [PubMed] [Google Scholar]
  5. Ceska T. A., Lamers M., Monaci P., Nicosia A., Cortese R., Suck D. The X-ray structure of an atypical homeodomain present in the rat liver transcription factor LFB1/HNF1 and implications for DNA binding. EMBO J. 1993 May;12(5):1805–1810. doi: 10.2210/pdb1lfb/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  8. Gomez-Skarmeta J. L., Diez del Corral R., de la Calle-Mustienes E., Ferré-Marcó D., Modolell J. Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell. 1996 Apr 5;85(1):95–105. doi: 10.1016/s0092-8674(00)81085-5. [DOI] [PubMed] [Google Scholar]
  9. Hanes S. D., Brent R. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell. 1989 Jun 30;57(7):1275–1283. doi: 10.1016/0092-8674(89)90063-9. [DOI] [PubMed] [Google Scholar]
  10. Holland P. W., Garcia-Fernàndez J., Williams N. A., Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl. 1994:125–133. [PubMed] [Google Scholar]
  11. Kahmann R., Bölker M. Self/nonself recognition in fungi: old mysteries and simple solutions. Cell. 1996 Apr 19;85(2):145–148. doi: 10.1016/s0092-8674(00)81091-0. [DOI] [PubMed] [Google Scholar]
  12. Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990 Feb 23;60(4):547–555. doi: 10.1016/0092-8674(90)90658-2. [DOI] [PubMed] [Google Scholar]
  13. Kerstetter R., Vollbrecht E., Lowe B., Veit B., Yamaguchi J., Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell. 1994 Dec;6(12):1877–1887. doi: 10.1105/tpc.6.12.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuhner M. K., Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol. 1994 May;11(3):459–468. doi: 10.1093/oxfordjournals.molbev.a040126. [DOI] [PubMed] [Google Scholar]
  15. Leiting B., De Francesco R., Tomei L., Cortese R., Otting G., Wüthrich K. The three-dimensional NMR-solution structure of the polypeptide fragment 195-286 of the LFB1/HNF1 transcription factor from rat liver comprises a nonclassical homeodomain. EMBO J. 1993 May;12(5):1797–1803. doi: 10.1002/j.1460-2075.1993.tb05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mann R. S., Chan S. K. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 1996 Jul;12(7):258–262. doi: 10.1016/0168-9525(96)10026-3. [DOI] [PubMed] [Google Scholar]
  17. McNeill H., Yang C. H., Brodsky M., Ungos J., Simon M. A. mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye. Genes Dev. 1997 Apr 15;11(8):1073–1082. doi: 10.1101/gad.11.8.1073. [DOI] [PubMed] [Google Scholar]
  18. Monica K., Galili N., Nourse J., Saltman D., Cleary M. L. PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1. Mol Cell Biol. 1991 Dec;11(12):6149–6157. doi: 10.1128/mcb.11.12.6149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moskow J. J., Bullrich F., Huebner K., Daar I. O., Buchberg A. M. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol. 1995 Oct;15(10):5434–5443. doi: 10.1128/mcb.15.10.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakamura T., Jenkins N. A., Copeland N. G. Identification of a new family of Pbx-related homeobox genes. Oncogene. 1996 Nov 21;13(10):2235–2242. [PubMed] [Google Scholar]
  21. Nakamura T., Largaespada D. A., Shaughnessy J. D., Jr, Jenkins N. A., Copeland N. G. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet. 1996 Feb;12(2):149–153. doi: 10.1038/ng0296-149. [DOI] [PubMed] [Google Scholar]
  22. Nourse J., Mellentin J. D., Galili N., Wilkinson J., Stanbridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990 Feb 23;60(4):535–545. doi: 10.1016/0092-8674(90)90657-z. [DOI] [PubMed] [Google Scholar]
  23. Quaedvlieg N., Dockx J., Rook F., Weisbeek P., Smeekens S. The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1. Plant Cell. 1995 Jan;7(1):117–129. doi: 10.1105/tpc.7.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reiser L., Modrusan Z., Margossian L., Samach A., Ohad N., Haughn G. W., Fischer R. L. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell. 1995 Dec 1;83(5):735–742. doi: 10.1016/0092-8674(95)90186-8. [DOI] [PubMed] [Google Scholar]
  25. Ryan A. K., Tejada M. L., May D. L., Dubaova M., Deeley R. G. Isolation and characterization of the chicken homeodomain protein AKR. Nucleic Acids Res. 1995 Aug 25;23(16):3252–3259. doi: 10.1093/nar/23.16.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simeone A., Pannese M., Acampora D., D'Esposito M., Boncinelli E. At least three human homeoboxes on chromosome 12 belong to the same transcription unit. Nucleic Acids Res. 1988 Jun 24;16(12):5379–5390. doi: 10.1093/nar/16.12.5379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steelman S., Moskow J. J., Muzynski K., North C., Druck T., Montgomery J. C., Huebner K., Daar I. O., Buchberg A. M. Identification of a conserved family of Meis1-related homeobox genes. Genome Res. 1997 Feb;7(2):142–156. doi: 10.1101/gr.7.2.142. [DOI] [PubMed] [Google Scholar]
  28. Tamaoki M., Tsugawa H., Minami E., Kayano T., Yamamoto N., Kano-Murakami Y., Matsuoka M. Alternative RNA products from a rice homeobox gene. Plant J. 1995 Jun;7(6):927–938. doi: 10.1046/j.1365-313x.1995.07060927.x. [DOI] [PubMed] [Google Scholar]
  29. Treacy M. N., Neilson L. I., Turner E. E., He X., Rosenfeld M. G. Twin of I-POU: a two amino acid difference in the I-POU homeodomain distinguishes an activator from an inhibitor of transcription. Cell. 1992 Feb 7;68(3):491–505. doi: 10.1016/0092-8674(92)90186-g. [DOI] [PubMed] [Google Scholar]
  30. Treisman R. DNA-binding proteins. Inside the MADS box. Nature. 1995 Aug 10;376(6540):468–469. doi: 10.1038/376468a0. [DOI] [PubMed] [Google Scholar]
  31. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]
  32. Wolberger C., Vershon A. K., Liu B., Johnson A. D., Pabo C. O. Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell. 1991 Nov 1;67(3):517–528. doi: 10.1016/0092-8674(91)90526-5. [DOI] [PubMed] [Google Scholar]
  33. Wright C. V., Cho K. W., Fritz A., Bürglin T. R., De Robertis E. M. A Xenopus laevis gene encodes both homeobox-containing and homeobox-less transcripts. EMBO J. 1987 Dec 20;6(13):4083–4094. doi: 10.1002/j.1460-2075.1987.tb02754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES