Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 1;25(21):4187–4193. doi: 10.1093/nar/25.21.4187

Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine.

K G Rajeev 1, V R Jadhav 1, K N Ganesh 1
PMCID: PMC147060  PMID: 9336445

Abstract

Oligodeoxynucleotides with spermine conjugation at C4 of 5-Me-dC ( sp -ODN) exhibit triple helix formation with complementary Watson-Crick duplexes, and were optimally stable at physiological pH 7.3 and low salt concentration. This was attributed to a favored reassociation of the polycationic third strand with the anionic DNA duplex. To gain further insights into the factors that contribute to the enhancement of triplex stability and for engineering improved triplex systems, the spermine appendage at C4 of 5-Me-dC was replaced with 1,11-diamino-3,6,9-trioxaundecane to create teg -ODNs. From the triple helix forming abilities of these modified ODNs studied by hysteresis behaviour and the effect of salts on triplex stability, it is demonstrated here that teg- ODNs stabilise triplexes through hydrophobic desolvation while sp -ODNs stabilise triplexes by charge effects. The results imply that factors in addition to base stacking effects and interstrand hydrogen bonds are significantly involved in modulation of triplex stability by base modified oligonucleotides.

Full Text

The Full Text of this article is available as a PDF (202.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barawkar D. A., Kumar V. A., Ganesh K. N. Triplex formation at physiological pH by oligonucleotides incorporating 5-Me-dC-(N4-spermine). Biochem Biophys Res Commun. 1994 Dec 30;205(3):1665–1670. doi: 10.1006/bbrc.1994.2859. [DOI] [PubMed] [Google Scholar]
  2. Barawkar D. A., Rajeev K. G., Kumar V. A., Ganesh K. N. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities. Nucleic Acids Res. 1996 Apr 1;24(7):1229–1237. doi: 10.1093/nar/24.7.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  4. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  5. François J. C., Saison-Behmoaras T., Thuong N. T., Hélène C. Inhibition of restriction endonuclease cleavage via triple helix formation by homopyrimidine oligonucleotides. Biochemistry. 1989 Dec 12;28(25):9617–9619. doi: 10.1021/bi00451a011. [DOI] [PubMed] [Google Scholar]
  6. Hampel K. J., Crosson P., Lee J. S. Polyamines favor DNA triplex formation at neutral pH. Biochemistry. 1991 May 7;30(18):4455–4459. doi: 10.1021/bi00232a012. [DOI] [PubMed] [Google Scholar]
  7. Jetter M. C., Hobbs F. W. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Biochemistry. 1993 Apr 6;32(13):3249–3254. doi: 10.1021/bi00064a006. [DOI] [PubMed] [Google Scholar]
  8. Joyce C. M., Grindley N. D. Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1830–1834. doi: 10.1073/pnas.80.7.1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krawczyk S. H., Milligan J. F., Wadwani S., Moulds C., Froehler B. C., Matteucci M. D. Oligonucleotide-mediated triple helix formation using an N3-protonated deoxycytidine analog exhibiting pH-independent binding within the physiological range. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3761–3764. doi: 10.1073/pnas.89.9.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maher L. J., 3rd DNA triple-helix formation: an approach to artificial gene repressors? Bioessays. 1992 Dec;14(12):807–815. doi: 10.1002/bies.950141204. [DOI] [PubMed] [Google Scholar]
  11. Maher L. J., 3rd, Wold B., Dervan P. B. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science. 1989 Aug 18;245(4919):725–730. doi: 10.1126/science.2549631. [DOI] [PubMed] [Google Scholar]
  12. Melander W., Horváth C. Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys. 1977 Sep;183(1):200–215. doi: 10.1016/0003-9861(77)90434-9. [DOI] [PubMed] [Google Scholar]
  13. Milligan J. F., Matteucci M. D., Martin J. C. Current concepts in antisense drug design. J Med Chem. 1993 Jul 9;36(14):1923–1937. doi: 10.1021/jm00066a001. [DOI] [PubMed] [Google Scholar]
  14. Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
  15. Nara H., Ono A., Matsuda A. Nucleosides and nucleotides. 135. DNA duplex and triplex formation and resistance to nucleolytic degradation of oligodeoxynucleotides containing syn-norspermidine at the 5-position of 2'-deoxyuridine. Bioconjug Chem. 1995 Jan-Feb;6(1):54–61. doi: 10.1021/bc00031a005. [DOI] [PubMed] [Google Scholar]
  16. Pieles U., Sproat B. S., Lamm G. M. A protected biotin containing deoxycytidine building block for solid phase synthesis of biotinylated oligonucleotides. Nucleic Acids Res. 1990 Aug 11;18(15):4355–4360. doi: 10.1093/nar/18.15.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Plum G. E., Pilch D. S., Singleton S. F., Breslauer K. J. Nucleic acid hybridization: triplex stability and energetics. Annu Rev Biophys Biomol Struct. 1995;24:319–350. doi: 10.1146/annurev.bb.24.060195.001535. [DOI] [PubMed] [Google Scholar]
  18. Pörschke D., Eigen M. Co-operative non-enzymic base recognition. 3. Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J Mol Biol. 1971 Dec 14;62(2):361–381. doi: 10.1016/0022-2836(71)90433-5. [DOI] [PubMed] [Google Scholar]
  19. Radhakrishnan I., Patel D. J. DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry. 1994 Sep 27;33(38):11405–11416. doi: 10.1021/bi00204a001. [DOI] [PubMed] [Google Scholar]
  20. Rajagopal P., Feigon J. NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4. Biochemistry. 1989 Sep 19;28(19):7859–7870. doi: 10.1021/bi00445a048. [DOI] [PubMed] [Google Scholar]
  21. Rougée M., Faucon B., Mergny J. L., Barcelo F., Giovannangeli C., Garestier T., Hélène C. Kinetics and thermodynamics of triple-helix formation: effects of ionic strength and mismatches. Biochemistry. 1992 Sep 29;31(38):9269–9278. doi: 10.1021/bi00153a021. [DOI] [PubMed] [Google Scholar]
  22. Singleton S. F., Dervan P. B. Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry. 1992 Nov 17;31(45):10995–11003. doi: 10.1021/bi00160a008. [DOI] [PubMed] [Google Scholar]
  23. Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 1984 Jun 11;12(11):4539–4557. doi: 10.1093/nar/12.11.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sun J. S., Garestier T., Hélène C. Oligonucleotide directed triple helix formation. Curr Opin Struct Biol. 1996 Jun;6(3):327–333. doi: 10.1016/s0959-440x(96)80051-0. [DOI] [PubMed] [Google Scholar]
  25. Thomas T., Thomas T. J. Selectivity of polyamines in triplex DNA stabilization. Biochemistry. 1993 Dec 21;32(50):14068–14074. doi: 10.1021/bi00213a041. [DOI] [PubMed] [Google Scholar]
  26. Tung C. H., Breslauer K. J., Stein S. Polyamine-linked oligonucleotides for DNA triple helix formation. Nucleic Acids Res. 1993 Nov 25;21(23):5489–5494. doi: 10.1093/nar/21.23.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tung C. H., Breslauer K. J., Stein S. Stabilization of DNA triple-helix formation by appended cationic peptides. Bioconjug Chem. 1996 Sep-Oct;7(5):529–531. doi: 10.1021/bc960040l. [DOI] [PubMed] [Google Scholar]
  28. Völker J., Klump H. H. Electrostatic effects in DNA triple helices. Biochemistry. 1994 Nov 15;33(45):13502–13508. doi: 10.1021/bi00249a039. [DOI] [PubMed] [Google Scholar]
  29. Zimmerman S. B., Murphy L. D. Excluded volume effects on the partition of single- and double-stranded oligodeoxynucleotides between two liquid phases. Biopolymers. 1992 Oct;32(10):1365–1373. doi: 10.1002/bip.360321010. [DOI] [PubMed] [Google Scholar]
  30. Zimmerman S. B., Trach S. O. Excluded volume effects on the partition of macromolecules between two liquid phases. Biopolymers. 1990;30(7-8):703–718. doi: 10.1002/bip.360300706. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES