Abstract
The loop of four thymines in the sodium form of the dimeric folded quadruplex [d(G3T4G3)]2 assumes a well-defined structure in which hydrogen bonding between the thymine bases appears to contribute to the stability and final conformation of the quadruplex. We have investigated the importance of the loop interactions by systematically replacing each thymine in the loop with a cytosine. The quadruplexes formed by d(G3CT3G3), d(G3TCT2G3), d(G3T2CTG3) and d(G3T3CG3) in the presence of 150 mM Na+ were studied by gel mobility, circular dichroism and 1H NMR spectroscopy. The major species formed by d(G3CT3G3), d(G3TCT2G3) and d(G3T3CG3) at 1 mM strand concentration at neutral pH is a dimeric folded quadruplex. d(G3T2CTG3) has anomalous behaviour and associates into a greater percentage of linear four-stranded quadruplex than the other three oligonucleotides at neutral pH and at the same concentration. The linear four-stranded quadruplex has a greater tendency to oligomerize to larger ill-defined structures, as demonstrated by broad 1H NMR resonances. At pH 4, when the cytosine is protonated, there is a greater tendency for each of the oligonucleotides to form some four-stranded linear quadruplex, except for d(G3T2CTG3), which has the reverse tendency. The experimental results are discussed in terms of hydrogen bonding within the thymine loop.
Full Text
The Full Text of this article is available as a PDF (78.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balagurumoorthy P., Brahmachari S. K., Mohanty D., Bansal M., Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992 Aug 11;20(15):4061–4067. doi: 10.1093/nar/20.15.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardin C. C., Corregan M., Brown B. A., 2nd, Frederick L. N. Cytosine-cytosine+ base pairing stabilizes DNA quadruplexes and cytosine methylation greatly enhances the effect. Biochemistry. 1993 Jun 8;32(22):5870–5880. doi: 10.1021/bi00073a021. [DOI] [PubMed] [Google Scholar]
- Kang C., Zhang X., Ratliff R., Moyzis R., Rich A. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature. 1992 Mar 12;356(6365):126–131. doi: 10.1038/356126a0. [DOI] [PubMed] [Google Scholar]
- Keniry M. A., Strahan G. D., Owen E. A., Shafer R. H. Solution structure of the Na+ form of the dimeric guanine quadruplex [d(G3T4G3)]2. Eur J Biochem. 1995 Oct 15;233(2):631–643. doi: 10.1111/j.1432-1033.1995.631_2.x. [DOI] [PubMed] [Google Scholar]
- Laughlan G., Murchie A. I., Norman D. G., Moore M. H., Moody P. C., Lilley D. M., Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science. 1994 Jul 22;265(5171):520–524. doi: 10.1126/science.8036494. [DOI] [PubMed] [Google Scholar]
- Lu M., Guo Q., Kallenbach N. R. Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochemistry. 1992 Mar 10;31(9):2455–2459. doi: 10.1021/bi00124a003. [DOI] [PubMed] [Google Scholar]
- Rhodes D., Giraldo R. Telomere structure and function. Curr Opin Struct Biol. 1995 Jun;5(3):311–322. doi: 10.1016/0959-440x(95)80092-1. [DOI] [PubMed] [Google Scholar]
- Scaria P. V., Shire S. J., Shafer R. H. Quadruplex structure of d(G3T4G3) stabilized by K+ or Na+ is an asymmetric hairpin dimer. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10336–10340. doi: 10.1073/pnas.89.21.10336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze P., Macaya R. F., Feigon J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J Mol Biol. 1994 Feb 4;235(5):1532–1547. doi: 10.1006/jmbi.1994.1105. [DOI] [PubMed] [Google Scholar]
- Schultze P., Smith F. W., Feigon J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure. 1994 Mar 15;2(3):221–233. doi: 10.1016/s0969-2126(00)00023-x. [DOI] [PubMed] [Google Scholar]
- Smith F. W., Lau F. W., Feigon J. d(G3T4G3) forms an asymmetric diagonally looped dimeric quadruplex with guanosine 5'-syn-syn-anti and 5'-syn-anti-anti N-glycosidic conformations. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10546–10550. doi: 10.1073/pnas.91.22.10546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strahan G. D., Shafer R. H., Keniry M. A. Structural properties of the [d(G3T4G3)]2 quadruplex: evidence for sequential syn-syn deoxyguanosines. Nucleic Acids Res. 1994 Dec 11;22(24):5447–5455. doi: 10.1093/nar/22.24.5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K. Y., Krawczyk S. H., Bischofberger N., Swaminathan S., Bolton P. H. The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity. Biochemistry. 1993 Oct 26;32(42):11285–11292. doi: 10.1021/bi00093a004. [DOI] [PubMed] [Google Scholar]
- Wang K. Y., Swaminathan S., Bolton P. H. Tertiary structure motif of Oxytricha telomere DNA. Biochemistry. 1994 Jun 21;33(24):7517–7527. doi: 10.1021/bi00190a004. [DOI] [PubMed] [Google Scholar]
- Wang Y., Patel D. J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993 Dec 15;1(4):263–282. doi: 10.1016/0969-2126(93)90015-9. [DOI] [PubMed] [Google Scholar]
- Weitzmann M. N., Woodford K. J., Usdin K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J Biol Chem. 1996 Aug 23;271(34):20958–20964. doi: 10.1074/jbc.271.34.20958. [DOI] [PubMed] [Google Scholar]
- Williamson J. R. G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct. 1994;23:703–730. doi: 10.1146/annurev.bb.23.060194.003415. [DOI] [PubMed] [Google Scholar]