Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 15;25(22):4589–4598. doi: 10.1093/nar/25.22.4589

Solution structure of RNA duplexes containing alternating CG base pairs: NMR study of r(CGCGCG)2 and 2'-O-Me(CGCGCG)2 under low salt conditions.

M Popenda 1, E Biala 1, J Milecki 1, R W Adamiak 1
PMCID: PMC147063  PMID: 9358170

Abstract

Structures of r(CGCGCG)2 and 2'-O-Me(CGCGCG)2 have been determined by NMR spectroscopy under low salt conditions. All protons and phosphorus nuclei resonances have been assigned. Signals of H5'/5" have been assigned stereospecifically. All 3JH,H and 3JP,H coupling constants have been measured. The structures were determined and refined using an iterative relaxation matrix procedure (IRMA) and the restrained MD simulation. Both duplexes form half-turn, right-handed helices with several conformational features which deviate significantly from a canonical A-RNA structure. Duplexes are characterised as having C3'-endo sugar pucker, very low base-pair rise and high helical twist and inclination angles. Helices are overwound with <10 bp per turn. There is limited inter-strand guanine stacking for CG steps. Within CG steps of both duplexes, the planes of the inter-strand cytosines are not parallel while guanines are almost parallel. For the GC steps this pattern is reversed. The 2'-O-methyl groups are spatially close to the 5'-hydrogens of neighbouring residues from the 3'-side and are directed towards the minor groove of 2'-O-Me(CGCGCG)2 forming a hydrophobic layer. Solution structures of both duplexes are similar; the effect of 2'-O-methylation on the parent RNA structure is small. This suggests that intrinsic properties imposed by alternating CG base pairs govern the overall conformation of both duplexes.

Full Text

The Full Text of this article is available as a PDF (818.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Hukins D. W., Dover S. D., Fuller W., Hodgson A. R. Structures of synthetic polynucleotides in the A-RNA and A'-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid--polyuridylic acid and polyinosinic acid--polycytidylic acid. J Mol Biol. 1973 Dec 5;81(2):107–122. doi: 10.1016/0022-2836(73)90183-6. [DOI] [PubMed] [Google Scholar]
  2. Blommers M. J., Pieles U., De Mesmaeker A. An approach to the structure determination of nucleic acid analogues hybridized to RNA. NMR studies of a duplex between 2'-OMe RNA and an oligonucleotide containing a single amide backbone modification. Nucleic Acids Res. 1994 Oct 11;22(20):4187–4194. doi: 10.1093/nar/22.20.4187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis P. W., Adamiak R. W., Tinoco I., Jr Z-RNA: the solution NMR structure of r(CGCGCG). Biopolymers. 1990 Jan;29(1):109–122. doi: 10.1002/bip.360290116. [DOI] [PubMed] [Google Scholar]
  4. Glemarec C., Kufel J., Földesi A., Maltseva T., Sandström A., Kirsebom L. A., Chattopadhyaya J. The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the 'NMR-window' concept]. Nucleic Acids Res. 1996 Jun 1;24(11):2022–2035. doi: 10.1093/nar/24.11.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guschlbauer W., Jankowski K. Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res. 1980 Mar 25;8(6):1421–1433. doi: 10.1093/nar/8.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haasnoot C. A., Westerink H. P., van der Marel G. A., van Boom J. H. Discrimination between A-type and B-type conformations of double helical nucleic acid fragments in solution by means of two-dimensional nuclear Overhauser experiments. J Biomol Struct Dyn. 1984 Oct;2(2):345–360. doi: 10.1080/07391102.1984.10507572. [DOI] [PubMed] [Google Scholar]
  7. Hall K., Cruz P., Tinoco I., Jr, Jovin T. M., van de Sande J. H. 'Z-RNA'--a left-handed RNA double helix. Nature. 1984 Oct 11;311(5986):584–586. doi: 10.1038/311584a0. [DOI] [PubMed] [Google Scholar]
  8. Heinemann U. A note on crystal packing and global helix structure in short A-DNA duplexes. J Biomol Struct Dyn. 1991 Feb;8(4):801–811. doi: 10.1080/07391102.1991.10507846. [DOI] [PubMed] [Google Scholar]
  9. Kochan G., Tyborowska J., Szewczyk B. Expression of animal virus genes using baculovirus AcNPV. Acta Biochim Pol. 1993;40(1):1–3. [PubMed] [Google Scholar]
  10. Krzyzaniak A., Barciszewski J., Fürste J. P., Bald R., Erdmann V. A., Sałański P., Jurczak J. A-Z-RNA conformational changes effected by high pressure. Int J Biol Macromol. 1994 Jun;16(3):159–162. doi: 10.1016/0141-8130(94)90044-2. [DOI] [PubMed] [Google Scholar]
  11. Lankhorst P. P., Haasnoot C. A., Erkelens C., Altona C. Carbon-13 NMR in conformational analysis of nucleic acid fragments. 2. A reparametrization of the Karplus equation for vicinal NMR coupling constants in CCOP and HCOP fragments. J Biomol Struct Dyn. 1984 Jun;1(6):1387–1405. doi: 10.1080/07391102.1984.10507527. [DOI] [PubMed] [Google Scholar]
  12. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  13. Lubini P., Zürcher W., Egli M. Stabilizing effects of the RNA 2'-substituent: crystal structure of an oligodeoxynucleotide duplex containing 2'-O-methylated adenosines. Chem Biol. 1994 Sep;1(1):39–45. doi: 10.1016/1074-5521(94)90039-6. [DOI] [PubMed] [Google Scholar]
  14. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  15. Pardi A. Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. Methods Enzymol. 1995;261:350–380. doi: 10.1016/s0076-6879(95)61017-0. [DOI] [PubMed] [Google Scholar]
  16. Shakked Z., Rabinovich D., Kennard O., Cruse W. B., Salisbury S. A., Viswamitra M. A. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C). J Mol Biol. 1983 May 15;166(2):183–201. doi: 10.1016/s0022-2836(83)80005-9. [DOI] [PubMed] [Google Scholar]
  17. Sproat B. S. Chemistry and applications of oligonucleotide analogues. J Biotechnol. 1995 Jul 31;41(2-3):221–238. doi: 10.1016/0168-1656(95)00012-f. [DOI] [PubMed] [Google Scholar]
  18. Tippin D. B., Sundaralingam M. Comparison of major groove hydration in isomorphous A-DNA octamers and dependence on base sequence and local helix geometry. Biochemistry. 1997 Jan 21;36(3):536–543. doi: 10.1021/bi9615194. [DOI] [PubMed] [Google Scholar]
  19. Varani G., Tinoco I., Jr RNA structure and NMR spectroscopy. Q Rev Biophys. 1991 Nov;24(4):479–532. doi: 10.1017/s0033583500003875. [DOI] [PubMed] [Google Scholar]
  20. Westerink H. P., van der Marel G. A., van Boom J. H., Haasnoot C. A. Conformational analysis of r(CGCGCG) in aqueous solution: an A-type double helical conformation studied by two-dimensional nuclear Overhauser effect spectroscopy. Nucleic Acids Res. 1984 May 25;12(10):4323–4338. doi: 10.1093/nar/12.10.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES