Abstract
Regulation of epidermal growth factor receptor (EGFR) signaling requires the concerted action of both positive and negative factors. While the existence of numerous molecules that stimulate EGFR activity has been well documented, direct biological inhibitors appear to be more limited in number and phylogenetic distribution. Kekkon1 (Kek1) represents one such inhibitor. Kek1 was initially identified in Drosophila melanogaster and appears to be absent from vertebrates and the invertebrate Caenorhabditis. To further investigate Kek1's function and evolution, we identified kek1 orthologs within dipterans. In D. melanogaster, kek1 is a transcriptional target of EGFR signaling during oogenesis, where it acts to attenuate receptor activity through an inhibitory feedback loop. The extracellular and transmembrane portion of Kek1 is sufficient for its inhibitory activity in D. melanogaster. Consistent with conservation of its role in EGFR signaling, interspecies comparisons indicate a high degree of identity throughout these regions. During formation of the dorsal-ventral axis Kek1 is expressed in dorsal follicle cells in a pattern that reflects the profile of receptor activation. D. virilis Kek1 (DvKek1) is also expressed dynamically in the dorsal follicle cells, supporting a conserved role in EGFR signaling. Confirming this, biochemical and transgenic assays indicate that DvKek1 is functionally interchangeable with DmKek1. Strikingly, we find that the cytoplasmic domain contains a region with the highest degree of conservation, which we have implicated in EGFR inhibition and dubbed the Kek tail (KT) box.
Full Text
The Full Text of this article is available as a PDF (613.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alroy I., Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997 Jun 23;410(1):83–86. doi: 10.1016/s0014-5793(97)00412-2. [DOI] [PubMed] [Google Scholar]
- Alvarado Diego, Rice Amy H., Duffy Joseph B. Knockouts of Kekkon1 define sequence elements essential for Drosophila epidermal growth factor receptor inhibition. Genetics. 2004 Jan;166(1):201–211. doi: 10.1534/genetics.166.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aroian R. V., Koga M., Mendel J. E., Ohshima Y., Sternberg P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature. 1990 Dec 20;348(6303):693–699. doi: 10.1038/348693a0. [DOI] [PubMed] [Google Scholar]
- Barclay A. N. Ig-like domains: evolution from simple interaction molecules to sophisticated antigen recognition. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14672–14674. doi: 10.1073/pnas.96.26.14672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blume-Jensen P., Hunter T. Oncogenic kinase signalling. Nature. 2001 May 17;411(6835):355–365. doi: 10.1038/35077225. [DOI] [PubMed] [Google Scholar]
- Bork P., Holm L., Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol. 1994 Sep 30;242(4):309–320. doi: 10.1006/jmbi.1994.1582. [DOI] [PubMed] [Google Scholar]
- Deng W. M., Bownes M. Two signalling pathways specify localised expression of the Broad-Complex in Drosophila eggshell patterning and morphogenesis. Development. 1997 Nov;124(22):4639–4647. doi: 10.1242/dev.124.22.4639. [DOI] [PubMed] [Google Scholar]
- Freeman M., Gurdon J. B. Regulatory principles of developmental signaling. Annu Rev Cell Dev Biol. 2002 Apr 2;18:515–539. doi: 10.1146/annurev.cellbio.18.012502.083458. [DOI] [PubMed] [Google Scholar]
- Gaunt Michael W., Miles Michael A. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol. 2002 May;19(5):748–761. doi: 10.1093/oxfordjournals.molbev.a004133. [DOI] [PubMed] [Google Scholar]
- Ghiglione C., Carraway K. L., 3rd, Amundadottir L. T., Boswell R. E., Perrimon N., Duffy J. B. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell. 1999 Mar 19;96(6):847–856. doi: 10.1016/s0092-8674(00)80594-2. [DOI] [PubMed] [Google Scholar]
- Ghiglione Christian, Amundadottir Laufey, Andresdottir Margret, Bilder David, Diamonti John A., Noselli Stéphane, Perrimon Norbert, Carraway III Kermit L. Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development. 2003 Sep;130(18):4483–4493. doi: 10.1242/dev.00617. [DOI] [PubMed] [Google Scholar]
- Ghiglione Christian, Amundadottir Laufey, Andresdottir Margret, Bilder David, Diamonti John A., Noselli Stéphane, Perrimon Norbert, Carraway III Kermit L. Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development. 2003 Sep;130(18):4483–4493. doi: 10.1242/dev.00617. [DOI] [PubMed] [Google Scholar]
- González-Reyes A., Elliott H., St Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature. 1995 Jun 22;375(6533):654–658. doi: 10.1038/375654a0. [DOI] [PubMed] [Google Scholar]
- Holt Robert A., Subramanian G. Mani, Halpern Aaron, Sutton Granger G., Charlab Rosane, Nusskern Deborah R., Wincker Patrick, Clark Andrew G., Ribeiro José M. C., Wides Ron. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129–149. doi: 10.1126/science.1076181. [DOI] [PubMed] [Google Scholar]
- Howes R., Wasserman J. D., Freeman M. In vivo analysis of Argos structure-function. Sequence requirements for inhibition of the Drosophila epidermal growth factor receptor. J Biol Chem. 1998 Feb 13;273(7):4275–4281. doi: 10.1074/jbc.273.7.4275. [DOI] [PubMed] [Google Scholar]
- Hung Albert Y., Sheng Morgan. PDZ domains: structural modules for protein complex assembly. J Biol Chem. 2001 Dec 10;277(8):5699–5702. doi: 10.1074/jbc.R100065200. [DOI] [PubMed] [Google Scholar]
- James Karen E., Berg Celeste A. Temporal comparison of Broad-Complex expression during eggshell-appendage patterning and morphogenesis in two Drosophila species with different eggshell-appendage numbers. Gene Expr Patterns. 2003 Oct;3(5):629–634. doi: 10.1016/s1567-133x(03)00136-4. [DOI] [PubMed] [Google Scholar]
- Klingler M., Gergen J. P. Regulation of runt transcription by Drosophila segmentation genes. Mech Dev. 1993 Sep;43(1):3–19. doi: 10.1016/0925-4773(93)90019-t. [DOI] [PubMed] [Google Scholar]
- Klueg Kristin M., Alvarado Diego, Muskavitch Marc A. T., Duffy Joseph B. Creation of a GAL4/UAS-coupled inducible gene expression system for use in Drosophila cultured cell lines. Genesis. 2002 Sep-Oct;34(1-2):119–122. doi: 10.1002/gene.10148. [DOI] [PubMed] [Google Scholar]
- Kobe B., Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995 Mar 9;374(6518):183–186. doi: 10.1038/374183a0. [DOI] [PubMed] [Google Scholar]
- Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
- Kobe B., Kajava A. V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001 Dec;11(6):725–732. doi: 10.1016/s0959-440x(01)00266-4. [DOI] [PubMed] [Google Scholar]
- Lesokhin A. M., Yu S. Y., Katz J., Baker N. E. Several levels of EGF receptor signaling during photoreceptor specification in wild-type, Ellipse, and null mutant Drosophila. Dev Biol. 1999 Jan 1;205(1):129–144. doi: 10.1006/dbio.1998.9121. [DOI] [PubMed] [Google Scholar]
- Musacchio M., Perrimon N. The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol. 1996 Aug 25;178(1):63–76. doi: 10.1006/dbio.1996.0198. [DOI] [PubMed] [Google Scholar]
- Nakamura Yukio, Matsuno Kenji. Species-specific activation of EGF receptor signaling underlies evolutionary diversity in the dorsal appendage number of the genus Drosophila eggshells. Mech Dev. 2003 Aug;120(8):897–907. doi: 10.1016/s0925-4773(03)00164-3. [DOI] [PubMed] [Google Scholar]
- Neuman-Silberberg F. S., Schüpbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell. 1993 Oct 8;75(1):165–174. [PubMed] [Google Scholar]
- Peri F., Bökel C., Roth S. Local Gurken signaling and dynamic MAPK activation during Drosophila oogenesis. Mech Dev. 1999 Mar;81(1-2):75–88. doi: 10.1016/s0925-4773(98)00228-7. [DOI] [PubMed] [Google Scholar]
- Peri F., Roth S. Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development. 2000 Feb;127(4):841–850. doi: 10.1242/dev.127.4.841. [DOI] [PubMed] [Google Scholar]
- Perrimon N., Duffy J. B. Developmental biology. Sending all the right signals. Nature. 1998 Nov 5;396(6706):18–19. doi: 10.1038/23815. [DOI] [PubMed] [Google Scholar]
- Pruess Manuela, Fleischmann Wolfgang, Kanapin Alexander, Karavidopoulou Youla, Kersey Paul, Kriventseva Evgenia, Mittard Virginie, Mulder Nicola, Phan Isabelle, Servant Florence. The Proteome Analysis database: a tool for the in silico analysis of whole proteomes. Nucleic Acids Res. 2003 Jan 1;31(1):414–417. doi: 10.1093/nar/gkg105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Queenan A. M., Ghabrial A., Schüpbach T. Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development. 1997 Oct;124(19):3871–3880. doi: 10.1242/dev.124.19.3871. [DOI] [PubMed] [Google Scholar]
- Riechmann V., Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev. 2001 Aug;11(4):374–383. doi: 10.1016/s0959-437x(00)00207-0. [DOI] [PubMed] [Google Scholar]
- Roth S., Neuman-Silberberg F. S., Barcelo G., Schüpbach T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell. 1995 Jun 16;81(6):967–978. doi: 10.1016/0092-8674(95)90016-0. [DOI] [PubMed] [Google Scholar]
- Ruohola-Baker H., Grell E., Chou T. B., Baker D., Jan L. Y., Jan Y. N. Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell. 1993 Jun 4;73(5):953–965. doi: 10.1016/0092-8674(93)90273-s. [DOI] [PubMed] [Google Scholar]
- Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
- Schejter E. D., Segal D., Glazer L., Shilo B. Z. Alternative 5' exons and tissue-specific expression of the Drosophila EGF receptor homolog transcripts. Cell. 1986 Sep 26;46(7):1091–1101. doi: 10.1016/0092-8674(86)90709-9. [DOI] [PubMed] [Google Scholar]
- Schweitzer R., Howes R., Smith R., Shilo B. Z., Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature. 1995 Aug 24;376(6542):699–702. doi: 10.1038/376699a0. [DOI] [PubMed] [Google Scholar]
- Speicher S., García-Alonso L., Carmena A., Martín-Bermudo M. D., de la Escalera S., Jiménez F. Neurotactin functions in concert with other identified CAMs in growth cone guidance in Drosophila. Neuron. 1998 Feb;20(2):221–233. doi: 10.1016/s0896-6273(00)80451-1. [DOI] [PubMed] [Google Scholar]
- Steward Annette, Adhya Sima, Clarke Jane. Sequence conservation in Ig-like domains: the role of highly conserved proline residues in the fibronectin type III superfamily. J Mol Biol. 2002 May 10;318(4):935–940. doi: 10.1016/S0022-2836(02)00184-5. [DOI] [PubMed] [Google Scholar]
- Wadsworth S. C., Vincent W. S., 3rd, Bilodeau-Wentworth D. A Drosophila genomic sequence with homology to human epidermal growth factor receptor. Nature. 1985 Mar 14;314(6007):178–180. doi: 10.1038/314178a0. [DOI] [PubMed] [Google Scholar]
- Wasserman J. D., Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell. 1998 Oct 30;95(3):355–364. doi: 10.1016/s0092-8674(00)81767-5. [DOI] [PubMed] [Google Scholar]