Abstract
In apomictic dandelions, Taraxacum officinale, unreduced megaspores are formed via a modified meiotic division (diplospory). The genetic basis of diplospory was investigated in a triploid (3x = 24) mapping population of 61 individuals that segregated approximately 1:1 for diplospory and meiotic reduction. This population was created by crossing a sexual diploid (2x = 16) with a tetraploid diplosporous pollen donor (4x = 32) that was derived from a triploid apomict. Six different inheritance models for diplospory were tested. The segregation ratio and the tight association with specific alleles at the microsatellite loci MSTA53 and MSTA78 strongly suggest that diplospory is controlled by a dominant allele D on a locus, which we have named DIPLOSPOROUS (DIP). Diplosporous plants have a simplex genotype, Ddd or Dddd. MSTA53 and MSTA78 were weakly linked to the 18S-25S rDNA locus. The D-linked allele of MSTA78 was absent in a hypotriploid (2n = 3x - 1) that also lacked one of the satellite chromosomes. Together these results suggest that DIP is located on the satellite chromosome. DIP is female specific, as unreduced gametes are not formed during male meiosis. Furthermore, DIP does not affect parthenogenesis, implying that several independently segregating genes control apomixis in dandelions.
Full Text
The Full Text of this article is available as a PDF (145.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
- Barton N. H., Charlesworth B. Why sex and recombination? Science. 1998 Sep 25;281(5385):1986–1990. [PubMed] [Google Scholar]
- Bhatt A. M., Canales C., Dickinson H. G. Plant meiosis: the means to 1N. Trends Plant Sci. 2001 Mar;6(3):114–121. doi: 10.1016/s1360-1385(00)01861-6. [DOI] [PubMed] [Google Scholar]
- Grimanelli D., Leblanc O., Espinosa E., Perotti E., González de León D., Savidan Y. Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity (Edinb) 1998 Jan;80(Pt 1):33–39. doi: 10.1046/j.1365-2540.1998.00263.x. [DOI] [PubMed] [Google Scholar]
- Grimanelli D., Leblanc O., Perotti E., Grossniklaus U. Developmental genetics of gametophytic apomixis. Trends Genet. 2001 Oct;17(10):597–604. doi: 10.1016/s0168-9525(01)02454-4. [DOI] [PubMed] [Google Scholar]
- Koltunow A. M. Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. Plant Cell. 1993 Oct;5(10):1425–1437. doi: 10.1105/tpc.5.10.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labombarda Paola, Busti Alessandra, Caceres Maria Eugenia, Pupilli Fulvio, Arcioni Sergio. An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome. 2002 Jun;45(3):513–519. doi: 10.1139/g02-014. [DOI] [PubMed] [Google Scholar]
- Mercier R., Grelon M., Vezon D., Horlow C., Pelletier G. How to characterize meiotic functions in plants? Biochimie. 2001 Nov-Dec;83(11-12):1023–1028. doi: 10.1016/s0300-9084(01)01348-7. [DOI] [PubMed] [Google Scholar]
- Noyes R. D., Rieseberg L. H. Two independent loci control agamospermy (Apomixis) in the triploid flowering plant Erigeron annuus. Genetics. 2000 May;155(1):379–390. doi: 10.1093/genetics/155.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozias-Akins P., Roche D., Hanna W. W. Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5127–5132. doi: 10.1073/pnas.95.9.5127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polanco C., Pérez de la Vega M. The structure of the rDNA intergenic spacer of Avena sativa L.: a comparative study. Plant Mol Biol. 1994 Jul;25(4):751–756. doi: 10.1007/BF00029613. [DOI] [PubMed] [Google Scholar]
- Siddiqi I., Ganesh G., Grossniklaus U., Subbiah V. The dyad gene is required for progression through female meiosis in Arabidopsis. Development. 2000 Jan;127(1):197–207. doi: 10.1242/dev.127.1.197. [DOI] [PubMed] [Google Scholar]
- Tas I. C., Van Dijk P. J. Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity (Edinb) 1999 Dec;83(Pt 6):707–714. doi: 10.1046/j.1365-2540.1999.00619.x. [DOI] [PubMed] [Google Scholar]
- Van Dijk P. J., Tas I. C., Falque M., Bakx-Schotman T. Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity (Edinb) 1999 Dec;83(Pt 6):715–721. doi: 10.1046/j.1365-2540.1999.00620.x. [DOI] [PubMed] [Google Scholar]
- Van Dijk P. J., Tas I. C., Falque M., Bakx-Schotman T. Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity (Edinb) 1999 Dec;83(Pt 6):715–721. doi: 10.1046/j.1365-2540.1999.00620.x. [DOI] [PubMed] [Google Scholar]
- van Baarlen P., van Dijk P. J., Hoekstra R. F., de Jong J. H. Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.). Genome. 2000 Oct;43(5):827–835. doi: 10.1139/g00-047. [DOI] [PubMed] [Google Scholar]
- van Dijk P., van Damme J. Apomixis technology and the paradox of sex. Trends Plant Sci. 2000 Feb;5(2):81–84. doi: 10.1016/s1360-1385(99)01545-9. [DOI] [PubMed] [Google Scholar]