Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):505–512. doi: 10.1534/genetics.166.1.505

Linkage disequilibrium testing when linkage phase is unknown.

Daniel J Schaid 1
PMCID: PMC1470678  PMID: 15020439

Abstract

Linkage disequilibrium, the nonrandom association of alleles from different loci, can provide valuable information on the structure of haplotypes in the human genome and is often the basis for evaluating the association of genomic variation with human traits among unrelated subjects. But, linkage phase of genetic markers measured on unrelated subjects is typically unknown, and so measurement of linkage disequilibrium, and testing whether it differs significantly from the null value of zero, requires statistical methods that can account for the ambiguity of unobserved haplotypes. A common method to test whether linkage disequilibrium differs significantly from zero is the likelihood-ratio statistic, which assumes Hardy-Weinberg equilibrium of the marker phenotype proportions. We show, by simulations, that this approach can be grossly biased, with either extremely conservative or liberal type I error rates. In contrast, we use simulations to show that a composite statistic, proposed by Weir and Cockerham, maintains the correct type I error rates, and, when comparisons are appropriate, has similar power as the likelihood-ratio statistic. We extend the composite statistic to allow for more than two alleles per locus, providing a global composite statistic, which is a strong competitor to the usual likelihood-ratio statistic.

Full Text

The Full Text of this article is available as a PDF (158.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Daly M. J., Rioux J. D., Schaffner S. F., Hudson T. J., Lander E. S. High-resolution haplotype structure in the human genome. Nat Genet. 2001 Oct;29(2):229–232. doi: 10.1038/ng1001-229. [DOI] [PubMed] [Google Scholar]
  2. Excoffier L., Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol. 1995 Sep;12(5):921–927. doi: 10.1093/oxfordjournals.molbev.a040269. [DOI] [PubMed] [Google Scholar]
  3. Fallin D., Schork N. J. Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet. 2000 Aug 22;67(4):947–959. doi: 10.1086/303069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gabriel Stacey B., Schaffner Stephen F., Nguyen Huy, Moore Jamie M., Roy Jessica, Blumenstiel Brendan, Higgins John, DeFelice Matthew, Lochner Amy, Faggart Maura. The structure of haplotype blocks in the human genome. Science. 2002 May 23;296(5576):2225–2229. doi: 10.1126/science.1069424. [DOI] [PubMed] [Google Scholar]
  5. Hawley M. E., Kidd K. K. HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered. 1995 Sep-Oct;86(5):409–411. doi: 10.1093/oxfordjournals.jhered.a111613. [DOI] [PubMed] [Google Scholar]
  6. Hedrick P. W. Gametic disequilibrium measures: proceed with caution. Genetics. 1987 Oct;117(2):331–341. doi: 10.1093/genetics/117.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Long J. C., Williams R. C., Urbanek M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet. 1995 Mar;56(3):799–810. [PMC free article] [PubMed] [Google Scholar]
  8. Slatkin M., Excoffier L. Testing for linkage disequilibrium in genotypic data using the Expectation-Maximization algorithm. Heredity (Edinb) 1996 Apr;76(Pt 4):377–383. doi: 10.1038/hdy.1996.55. [DOI] [PubMed] [Google Scholar]
  9. Sobel Eric, Papp Jeanette C., Lange Kenneth. Detection and integration of genotyping errors in statistical genetics. Am J Hum Genet. 2002 Jan 8;70(2):496–508. doi: 10.1086/338920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Weir B. S. Inferences about linkage disequilibrium. Biometrics. 1979 Mar;35(1):235–254. [PubMed] [Google Scholar]
  11. Zabetian Cyrus P., Buxbaum Sarah G., Elston Robert C., Köhnke Michael D., Anderson George M., Gelernter Joel, Cubells Joseph F. The structure of linkage disequilibrium at the DBH locus strongly influences the magnitude of association between diallelic markers and plasma dopamine beta-hydroxylase activity. Am J Hum Genet. 2003 Apr 30;72(6):1389–1400. doi: 10.1086/375499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES