Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):265–277. doi: 10.1534/genetics.166.1.265

Evolution of autosomal suppression of the sex-ratio trait in Drosophila.

Suzana Casaccia Vaz 1, Antonio Bernardo Carvalho 1
PMCID: PMC1470679  PMID: 15020424

Abstract

The sex-ratio trait is the production of female-biased progenies due to X-linked meiotic drive in males of several Drosophila species. The driving X chromosome (called SR) is not fixed due to at least two stabilizing factors: natural selection (favoring ST, the nondriving standard X) and drive suppression by either Y-linked or autosomal genes. The evolution of autosomal suppression is explained by Fisher's principle, a mechanism of natural selection that leads to equal proportion of males and females in a sexually reproducing population. In fact, sex-ratio expression is partially suppressed by autosomal genes in at least three Drosophila species. The population genetics of this system is not completely understood. In this article we develop a mathematical model for the evolution of autosomal suppressors of SR (sup alleles) and show that: (i). an autosomal suppressor cannot invade when SR is very deleterious in males (c < (1)/(3), where c is the fitness of SR/Y males); (ii). "SR/ST, sup/+" polymorphisms occur when SR is partially deleterious ( approximately 0.3 < c < 1); while (iii). SR neutrality (c = 1) results in sup fixation and thus in total abolishment of drive. So, surprisingly, as long as there is any selection against SR/Y males, neutral autosomal suppressors will not be fixed. In that case, when a polymorphic equilibrium exists, the average female proportion in SR/Y males' progeny is given approximately by ac + 1 - a + a (2) c + 1 (2) + 1 - 4ac /4ac, where a is the fitness of SR/ST females.

Full Text

The Full Text of this article is available as a PDF (224.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carvalho A. B., Sampaio M. C., Varandas F. R., Klaczko L. B. An experimental demonstration of Fisher's principle: evolution of sexual proportion by natural selection. Genetics. 1998 Feb;148(2):719–731. doi: 10.1093/genetics/148.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carvalho A. B., Vaz S. C. Are Drosophila SR drive chromosomes always balanced? Heredity (Edinb) 1999 Sep;83(Pt 3):221–228. doi: 10.1038/sj.hdy.6886100. [DOI] [PubMed] [Google Scholar]
  3. Carvalho A. B., Vaz S. C., Klaczko L. B. Polymorphism for Y-linked suppressors of sex-ratio in two natural populations of Drosophila mediopunctata. Genetics. 1997 Jul;146(3):891–902. doi: 10.1093/genetics/146.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cazemajor M., Landré C., Montchamp-Moreau C. The sex-ratio trait in Drosophila simulans: genetic analysis of distortion and suppression. Genetics. 1997 Oct;147(2):635–642. doi: 10.1093/genetics/147.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G. Natural selection and Y-linked polymorphism. Genetics. 1987 Mar;115(3):569–577. doi: 10.1093/genetics/115.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conover D. O., Van Voorhees D. A. Evolution of a balanced sex ratio by frequency-dependent selection in a fish. Science. 1990 Dec 14;250(4987):1556–1558. doi: 10.1126/science.250.4987.1556. [DOI] [PubMed] [Google Scholar]
  7. Curtsinger J. W., Feldman M. W. Experimental and Theoretical Analysis of the "Sex-Ratio" Polymorphism in DROSOPHILA PSEUDOOBSCURA. Genetics. 1980 Feb;94(2):445–466. doi: 10.1093/genetics/94.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dermitzakis E. T., Masly J. P., Waldrip H. M., Clark A. G. Non-Mendelian segregation of sex chromosomes in heterospecific Drosophila males. Genetics. 2000 Feb;154(2):687–694. doi: 10.1093/genetics/154.2.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gebhardt M. D., Anderson W. W. Temperature related fertility selection on body size and the sex-ratio gene arrangement in Drosophila pseudoobscura. Genet Res. 1993 Aug;62(1):63–75. doi: 10.1017/s0016672300031578. [DOI] [PubMed] [Google Scholar]
  10. Gershenson S. A New Sex-Ratio Abnormality in DROSOPHILA OBSCURA. Genetics. 1928 Nov;13(6):488–507. doi: 10.1093/genetics/13.6.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamilton W. D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science. 1967 Apr 28;156(3774):477–488. doi: 10.1126/science.156.3774.477. [DOI] [PubMed] [Google Scholar]
  12. Montchamp-Moreau C., Ginhoux V., Atlan A. The Y chromosomes of Drosophila simulans are highly polymorphic for their ability to suppress sex-ratio drive. Evolution. 2001 Apr;55(4):728–737. doi: 10.1554/0014-3820(2001)055[0728:tycods]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  13. Nur U. The expected changes in the frequency of alleles affecting the sex ratio. Theor Popul Biol. 1974 Apr;5(2):143–147. doi: 10.1016/0040-5809(74)90036-7. [DOI] [PubMed] [Google Scholar]
  14. Stalker H D. The Genetic Systems Modifying Meiotic Drive in Drosophila Paramelanica. Genetics. 1961 Feb;46(2):177–202. doi: 10.1093/genetics/46.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tao Y., Hartl D. L., Laurie C. C. Sex-ratio segregation distortion associated with reproductive isolation in Drosophila. Proc Natl Acad Sci U S A. 2001 Oct 30;98(23):13183–13188. doi: 10.1073/pnas.231478798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomson G. J., Feldman M. W. Population genetics of modifiers of meiotic drive: IV. On the evolution of sex-ratio distortion. Theor Popul Biol. 1975 Oct;8(2):202–211. doi: 10.1016/0040-5809(75)90032-5. [DOI] [PubMed] [Google Scholar]
  17. Uyenoyama M. K., Bengtsson B. O. Towards a genetic theory for the evolution of the sex ratio. Genetics. 1979 Nov;93(3):721–736. doi: 10.1093/genetics/93.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. de Carvalho A. B., Klaczko L. B. Autosomal suppressors of sex-ratio in Drosophila mediopunctata. Heredity (Edinb) 1993 Nov;71(Pt 5):546–551. doi: 10.1038/hdy.1993.174. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES