Abstract
Dissecting the genetic architecture of regulatory elements on a genome-wide basis is now technically feasible. The potential medical and genetical implications of this kind of experiment being very large, it is paramount to assess the reliability and repeatability of the results. This is especially relevant in outbred populations, such as humans, where the genetic architecture is necessarily more complex than in crosses between inbred lines. Here we simulated a chromosome-wide SNP association study using real human microarray data. Our model predicted, as observed, a highly significant clustering of quantitative trait loci (QTL) for gene expression. Importantly, the estimates of QTL positions were often unstable, and a decrease in the number of individuals of 16% resulted in a loss of power of approximately 30% and a large shift in the position estimate in approximately 30-40% of the remaining significant QTL. We also found that the analysis of two repeated measures of the same mRNA can also result in two QTL that are located far apart. The intrinsic difficulties of analyzing outbred populations should not be underestimated. We anticipate that (many) conflicting results may be collected in the future if whole-genome association studies for mRNA levels are carried out in outbred populations.
Full Text
The Full Text of this article is available as a PDF (130.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alizadeh A. A., Eisen M. B., Davis R. E., Ma C., Lossos I. S., Rosenwald A., Boldrick J. C., Sabet H., Tran T., Yu X. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000 Feb 3;403(6769):503–511. doi: 10.1038/35000501. [DOI] [PubMed] [Google Scholar]
- Caron H., van Schaik B., van der Mee M., Baas F., Riggins G., van Sluis P., Hermus M. C., van Asperen R., Boon K., Voûte P. A. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science. 2001 Feb 16;291(5507):1289–1292. doi: 10.1126/science.1056794. [DOI] [PubMed] [Google Scholar]
- Cheung Vivian G., Conlin Laura K., Weber Teresa M., Arcaro Melissa, Jen Kuang-Yu, Morley Michael, Spielman Richard S. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet. 2003 Feb 3;33(3):422–425. doi: 10.1038/ng1094. [DOI] [PubMed] [Google Scholar]
- Cheung Vivian G., Spielman Richard S. The genetics of variation in gene expression. Nat Genet. 2002 Dec;32 (Suppl):522–525. doi: 10.1038/ng1036. [DOI] [PubMed] [Google Scholar]
- Churchill Gary A. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002 Dec;32 (Suppl):490–495. doi: 10.1038/ng1031. [DOI] [PubMed] [Google Scholar]
- Darvasi Ariel. Genomics: Gene expression meets genetics. Nature. 2003 Mar 20;422(6929):269–270. doi: 10.1038/422269a. [DOI] [PubMed] [Google Scholar]
- Hudson Richard R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002 Feb;18(2):337–338. doi: 10.1093/bioinformatics/18.2.337. [DOI] [PubMed] [Google Scholar]
- Jansen Ritsert C. Studying complex biological systems using multifactorial perturbation. Nat Rev Genet. 2003 Feb;4(2):145–151. doi: 10.1038/nrg996. [DOI] [PubMed] [Google Scholar]
- Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999 Jun;22(2):139–144. doi: 10.1038/9642. [DOI] [PubMed] [Google Scholar]
- Oleksiak Marjorie F., Churchill Gary A., Crawford Douglas L. Variation in gene expression within and among natural populations. Nat Genet. 2002 Sep 3;32(2):261–266. doi: 10.1038/ng983. [DOI] [PubMed] [Google Scholar]
- Phillips M. S., Lawrence R., Sachidanandam R., Morris A. P., Balding D. J., Donaldson M. A., Studebaker J. F., Ankener W. M., Alfisi S. V., Kuo F-S. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet. 2003 Feb 18;33(3):382–387. doi: 10.1038/ng1100. [DOI] [PubMed] [Google Scholar]
- Reich D. E., Cargill M., Bolk S., Ireland J., Sabeti P. C., Richter D. J., Lavery T., Kouyoumjian R., Farhadian S. F., Ward R. Linkage disequilibrium in the human genome. Nature. 2001 May 10;411(6834):199–204. doi: 10.1038/35075590. [DOI] [PubMed] [Google Scholar]
- Rosenwald Andreas, Wright George, Chan Wing C., Connors Joseph M., Campo Elias, Fisher Richard I., Gascoyne Randy D., Muller-Hermelink H. Konrad, Smeland Erlend B., Giltnane Jena M. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002 Jun 20;346(25):1937–1947. doi: 10.1056/NEJMoa012914. [DOI] [PubMed] [Google Scholar]
- Schadt Eric E., Monks Stephanie A., Drake Thomas A., Lusis Aldons J., Che Nam, Colinayo Veronica, Ruff Thomas G., Milligan Stephen B., Lamb John R., Cavet Guy. Genetics of gene expression surveyed in maize, mouse and man. Nature. 2003 Mar 20;422(6929):297–302. doi: 10.1038/nature01434. [DOI] [PubMed] [Google Scholar]
- Wayne M. L., McIntyre L. M. Combining mapping and arraying: An approach to candidate gene identification. Proc Natl Acad Sci U S A. 2002 Nov 1;99(23):14903–14906. doi: 10.1073/pnas.222549199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitney Adeline R., Diehn Maximilian, Popper Stephen J., Alizadeh Ash A., Boldrick Jennifer C., Relman David A., Brown Patrick O. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A. 2003 Feb 10;100(4):1896–1901. doi: 10.1073/pnas.252784499. [DOI] [PMC free article] [PubMed] [Google Scholar]
