Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):125–133. doi: 10.1534/genetics.166.1.125

Incomplete penetrance and variable expressivity of a growth defect as a consequence of knocking out two K(+) transporters in the euascomycete fungus Podospora anserina.

Hervé Lalucque 1, Philippe Silar 1
PMCID: PMC1470691  PMID: 15020412

Abstract

We describe an example of incomplete penetrance and variable expressivity in the filamentous fungus Podospora anserina, two genetic properties classically associated with mutations in more complex organisms, such as green plants and animals. We show that the knockouts of two TRK-related K(+) transporters of this ascomycete present variability in their phenotype that cannot be attributed to fluctuations of the genetic background or the environment. Thalli of the knockout strains derived from independent monokaryotic ascospores or from a single monokaryotic ascospore and cultivated under standard growth conditions may or may not present impaired growth. When impaired, thalli exhibit a range of phenotypes. Environmental conditions control expressivity to a large extent and penetrance to a low extent. Restoration of functional potassium transport by heterologous expression of K(+) transporters from Neurospora crassa abolishes or strongly diminishes the growth impairment. These data show that incomplete penetrance and variable expressivity can be an intrinsic property of a single Mendelian loss-of-function mutation. They also show that such variability in the expression of a mutant phenotype can be promoted by a phenomenon not obviously related to the well-known chromatin structure modifications, i.e., potassium transport. They provide a framework to understand human channelopathies with similar properties.

Full Text

The Full Text of this article is available as a PDF (214.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayoub N., Goldshmidt I., Cohen A. Position effect variegation at the mating-type locus of fission yeast: a cis-acting element inhibits covariegated expression of genes in the silent and expressed domains. Genetics. 1999 Jun;152(2):495–508. doi: 10.1093/genetics/152.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begel O., Boulay J., Albert B., Dufour E., Sainsard-Chanet A. Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol. 1999 Jun;19(6):4093–4100. doi: 10.1128/mcb.19.6.4093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Derkatch I. L., Chernoff Y. O., Kushnirov V. V., Inge-Vechtomov S. G., Liebman S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics. 1996 Dec;144(4):1375–1386. doi: 10.1093/genetics/144.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HEYTLER P. G. uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry. 1963 Mar-Apr;2:357–361. doi: 10.1021/bi00902a031. [DOI] [PubMed] [Google Scholar]
  5. Haro R., Sainz L., Rubio F., Rodríguez-Navarro A. Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol. 1999 Jan;31(2):511–520. doi: 10.1046/j.1365-2958.1999.01192.x. [DOI] [PubMed] [Google Scholar]
  6. Levin Michael, Thorlin Thorleif, Robinson Kenneth R., Nogi Taisaku, Mercola Mark. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell. 2002 Oct 4;111(1):77–89. doi: 10.1016/s0092-8674(02)00939-x. [DOI] [PubMed] [Google Scholar]
  7. Ling K. Y., Haynes W. J., Oesterle L., Kung C., Preston R. R., Saimi Y. K(+)-channel transgenes reduce K(+) currents in Paramecium, probably by a post-translational mechanism. Genetics. 2001 Nov;159(3):987–995. doi: 10.1093/genetics/159.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Madrid R., Gómez M. J., Ramos J., Rodríguez-Navarro A. Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem. 1998 Jun 12;273(24):14838–14844. doi: 10.1074/jbc.273.24.14838. [DOI] [PubMed] [Google Scholar]
  9. Maillet L., Gaden F., Brevet V., Fourel G., Martin S. G., Dubrana K., Gasser S. M., Gilson E. Ku-deficient yeast strains exhibit alternative states of silencing competence. EMBO Rep. 2001 Mar;2(3):203–210. doi: 10.1093/embo-reports/kve044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McCusker J. H., Perlin D. S., Haber J. E. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):4082–4088. doi: 10.1128/mcb.7.11.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Navarre C., Goffeau A. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J. 2000 Jun 1;19(11):2515–2524. doi: 10.1093/emboj/19.11.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Queitsch Christine, Sangster Todd A., Lindquist Susan. Hsp90 as a capacitor of phenotypic variation. Nature. 2002 May 12;417(6889):618–624. doi: 10.1038/nature749. [DOI] [PubMed] [Google Scholar]
  13. Rakyan Vardhman K., Blewitt Marnie E., Druker Riki, Preis Jost I., Whitelaw Emma. Metastable epialleles in mammals. Trends Genet. 2002 Jul;18(7):348–351. doi: 10.1016/s0168-9525(02)02709-9. [DOI] [PubMed] [Google Scholar]
  14. Silar P., Daboussi M. J. Non-conventional infectious elements in filamentous fungi. Trends Genet. 1999 Apr;15(4):141–145. doi: 10.1016/s0168-9525(99)01698-4. [DOI] [PubMed] [Google Scholar]
  15. Silar P., Haedens V., Rossignol M., Lalucque H. Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics. 1999 Jan;151(1):87–95. doi: 10.1093/genetics/151.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Silar P., Lalucque H., Vierny C. Cell degeneration in the model system Podospora anserina. Biogerontology. 2001;2(1):1–17. doi: 10.1023/a:1010000816277. [DOI] [PubMed] [Google Scholar]
  17. Silar Philippe, Barreau Christian, Debuchy Robert, Kicka Sébastien, Turcq Béatrice, Sainsard-Chanet Annie, Sellem Carole H., Billault Alain, Cattolico Laurence, Duprat Simone. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genet Biol. 2003 Aug;39(3):250–263. doi: 10.1016/s1087-1845(03)00025-2. [DOI] [PubMed] [Google Scholar]
  18. Sollars Vincent, Lu Xiangyi, Xiao Li, Wang Xiaoyan, Garfinkel Mark D., Ruden Douglas M. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2002 Dec 16;33(1):70–74. doi: 10.1038/ng1067. [DOI] [PubMed] [Google Scholar]
  19. Vincent G. M. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu Rev Med. 1998;49:263–274. doi: 10.1146/annurev.med.49.1.263. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES