Abstract
In models of maintenance of genetic variance (V (G)) it has often been assumed that mutant alleles act additively. However, experimental data show that the dominance coefficient varies among mutant alleles and those of large effect tend to be recessive. On the basis of empirical knowledge of mutations, a joint-effect model of pleiotropic and real stabilizing selection that includes dominance is constructed and analyzed. It is shown that dominance can dramatically alter the prediction of equilibrium V (G). Analysis indicates that for the situations where mutations are more recessive for fitness than for a quantitative trait, as supported by the available data, the joint-effect model predicts a significantly higher V (G) than does an additive model. Importantly, for what seem to be realistic distributions of mutational effects (i.e., many mutants may not affect the quantitative trait substantially but are likely to affect fitness), the observed high levels of genetic variation in the quantitative trait under strong apparent stabilizing selection can be generated. This investigation supports the hypothesis that most V (G) comes from the alleles nearly neutral for fitness in heterozygotes while apparent stabilizing selection is contributed mainly by the alleles of large effect on the quantitative trait. Thus considerations of dominance coefficients of mutations lend further support to our previous conclusion that mutation-selection balance is a plausible mechanism of the maintenance of the genetic variance in natural populations.
Full Text
The Full Text of this article is available as a PDF (174.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal A. F., Chasnov J. R. Recessive mutations and the maintenance of sex in structured populations. Genetics. 2001 Jun;158(2):913–917. doi: 10.1093/genetics/158.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton N. H., Keightley P. D. Understanding quantitative genetic variation. Nat Rev Genet. 2002 Jan;3(1):11–21. doi: 10.1038/nrg700. [DOI] [PubMed] [Google Scholar]
- Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr David E., Dudash Michele R. Recent approaches into the genetic basis of inbreeding depression in plants. Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1071–1084. doi: 10.1098/rstb.2003.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
- Chasnov J. R. Mutation-selection balance, dominance and the maintenance of sex. Genetics. 2000 Nov;156(3):1419–1425. doi: 10.1093/genetics/156.3.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chavarrías D., López-Fanjul C., García-Dorado A. The rate of mutation and the homozygous and heterozygous mutational effects for competitive viability: a long-term experiment with Drosophila melanogaster. Genetics. 2001 Jun;158(2):681–693. doi: 10.1093/genetics/158.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng Hong-Wen, Gao Guimin, Li Jin-Long. Estimation of deleterious genomic mutation parameters in natural populations by accounting for variable mutation effects across loci. Genetics. 2002 Nov;162(3):1487–1500. doi: 10.1093/genetics/162.3.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry James D., Nuzhdin Sergey V. Dominance of mutations affecting viability in Drosophila melanogaster. Genetics. 2003 Apr;163(4):1357–1364. doi: 10.1093/genetics/163.4.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Dorado A., Caballero A. On the average coefficient of dominance of deleterious spontaneous mutations. Genetics. 2000 Aug;155(4):1991–2001. doi: 10.1093/genetics/155.4.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Dorado A., Caballero A. On the average coefficient of dominance of deleterious spontaneous mutations. Genetics. 2000 Aug;155(4):1991–2001. doi: 10.1093/genetics/155.4.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Dorado A., Caballero A. On the average coefficient of dominance of deleterious spontaneous mutations. Genetics. 2000 Aug;155(4):1991–2001. doi: 10.1093/genetics/155.4.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Dorado A., López-Fanjul C., Caballero A. Properties of spontaneous mutations affecting quantitative traits. Genet Res. 1999 Dec;74(3):341–350. doi: 10.1017/s0016672399004206. [DOI] [PubMed] [Google Scholar]
- Hayes B., Goddard M. E. The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol. 2001 May-Jun;33(3):209–229. doi: 10.1186/1297-9686-33-3-209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houle D., Hughes K. A., Assimacopoulos S., Charlesworth B. The effects of spontaneous mutation on quantitative traits. II. Dominance of mutations with effects on life-history traits. Genet Res. 1997 Aug;70(1):27–34. doi: 10.1017/s001667239700284x. [DOI] [PubMed] [Google Scholar]
- Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D. A metabolic basis for dominance and recessivity. Genetics. 1996 Jun;143(2):621–625. doi: 10.1093/genetics/143.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D., Hill W. G. Quantitative genetic variability maintained by mutation-stabilizing selection balance in finite populations. Genet Res. 1988 Aug;52(1):33–43. doi: 10.1017/s0016672300027282. [DOI] [PubMed] [Google Scholar]
- Keightley P. D., Kacser H. Dominance, pleiotropy and metabolic structure. Genetics. 1987 Oct;117(2):319–329. doi: 10.1093/genetics/117.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci U S A. 1965 Sep;54(3):731–736. doi: 10.1073/pnas.54.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingsolver J. G., Hoekstra H. E., Hoekstra J. M., Berrigan D., Vignieri S. N., Hill C. E., Hoang A., Gibert P., Beerli P. The strength of phenotypic selection in natural populations. Am Nat. 2001 Mar;157(3):245–261. doi: 10.1086/319193. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S., Turelli M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics. 1992 Oct;132(2):603–618. doi: 10.1093/genetics/132.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. doi: 10.1017/s0016672300016037. [DOI] [PubMed] [Google Scholar]
- Lyman R. F., Lawrence F., Nuzhdin S. V., Mackay T. F. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics. 1996 May;143(1):277–292. doi: 10.1093/genetics/143.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MULLER H. J. Our load of mutations. Am J Hum Genet. 1950 Jun;2(2):111–176. [PMC free article] [PubMed] [Google Scholar]
- Mackay T. F. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–339. doi: 10.1146/annurev.genet.35.102401.090633. [DOI] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukai T., Chigusa S., Yoshikawa I. The genetic structure of natural populations of Drosophila melanogaster. 3. Dominance effect of spontaneous mutant polygenes controlling viability in heterozygous genetic backgrounds. Genetics. 1965 Sep;52(3):493–501. doi: 10.1093/genetics/52.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr H. Allen. The distribution of fitness effects among beneficial mutations. Genetics. 2003 Apr;163(4):1519–1526. doi: 10.1093/genetics/163.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters A. D., Halligan D. L., Whitlock M. C., Keightley P. D. Dominance and overdominance of mildly deleterious induced mutations for fitness traits in Caenorhabditis elegans. Genetics. 2003 Oct;165(2):589–599. doi: 10.1093/genetics/165.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santiago E., Albornoz J., Domínguez A., Toro M. A., López-Fanjul C. The distribution of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster. Genetics. 1992 Nov;132(3):771–781. doi: 10.1093/genetics/132.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
- Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
- Turelli M., Orr H. A. The dominance theory of Haldane's rule. Genetics. 1995 May;140(1):389–402. doi: 10.1093/genetics/140.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassilieva L. L., Hook A. M., Lynch M. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution. 2000 Aug;54(4):1234–1246. doi: 10.1111/j.0014-3820.2000.tb00557.x. [DOI] [PubMed] [Google Scholar]
- Wang J., Caballero A., Keightley P. D., Hill W. G. Bottleneck effect on genetic variance. A theoretical investigation of the role of dominance. Genetics. 1998 Sep;150(1):435–447. doi: 10.1093/genetics/150.1.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Xu-Sheng, Hill William G. Joint effects of pleiotropic selection and stabilizing selection on the maintenance of quantitative genetic variation at mutation-selection balance. Genetics. 2002 Sep;162(1):459–471. doi: 10.1093/genetics/162.1.459. [DOI] [PMC free article] [PubMed] [Google Scholar]