Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):389–417. doi: 10.1534/genetics.166.1.389

A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium).

Junkang Rong 1, Colette Abbey 1, John E Bowers 1, Curt L Brubaker 1, Charlene Chang 1, Peng W Chee 1, Terrye A Delmonte 1, Xiaoling Ding 1, Juan J Garza 1, Barry S Marler 1, Chan-hwa Park 1, Gary J Pierce 1, Katy M Rainey 1, Vipin K Rastogi 1, Stefan R Schulze 1, Norma L Trolinder 1, Jonathan F Wendel 1, Thea A Wilkins 1, T Dawn Williams-Coplin 1, Rod A Wing 1, Robert J Wright 1, Xinping Zhao 1, Linghua Zhu 1, Andrew H Paterson 1
PMCID: PMC1470701  PMID: 15020432

Abstract

We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM ( approximately 600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM ( approximately 500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6-11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the "portability" of these STS loci across populations and detection systems useful for marker-assisted improvement of the world's leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowers John E., Abbey Colette, Anderson Sharon, Chang Charlene, Draye Xavier, Hoppe Alison H., Jessup Russell, Lemke Cornelia, Lennington Jennifer, Li Zhikang. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics. 2003 Sep;165(1):367–386. doi: 10.1093/genetics/165.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ewing B., Hillier L., Wendl M. C., Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998 Mar;8(3):175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  3. Gene Ontology Consortium Creating the gene ontology resource: design and implementation. Genome Res. 2001 Aug;11(8):1425–1433. doi: 10.1101/gr.180801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jiang C. X., Chee P. W., Draye X., Morrell P. L., Smith C. W., Paterson A. H. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution. 2000 Jun;54(3):798–814. doi: 10.1111/j.0014-3820.2000.tb00081.x. [DOI] [PubMed] [Google Scholar]
  5. Jiang C., Wright R. J., El-Zik K. M., Paterson A. H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4419–4424. doi: 10.1073/pnas.95.8.4419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kim H. J., Triplett B. A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001 Dec;127(4):1361–1366. [PMC free article] [PubMed] [Google Scholar]
  7. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  8. Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reinisch A. J., Dong J. M., Brubaker C. L., Stelly D. M., Wendel J. F., Paterson A. H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics. 1994 Nov;138(3):829–847. doi: 10.1093/genetics/138.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Saranga Y., Menz M., Jiang C. X., Wright R. J., Yakir D., Paterson A. H. Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res. 2001 Dec;11(12):1988–1995. doi: 10.1101/gr.157201. [DOI] [PubMed] [Google Scholar]
  11. Senchina David S., Alvarez Ines, Cronn Richard C., Liu Bao, Rong Junkang, Noyes Richard D., Paterson Andrew H., Wing Rod A., Wilkins Thea A., Wendel Jonathan F. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol. 2003 Apr 2;20(4):633–643. doi: 10.1093/molbev/msg065. [DOI] [PubMed] [Google Scholar]
  12. Wendel J. F. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4132–4136. doi: 10.1073/pnas.86.11.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wendel Jonathan F., Cronn Richard C., Johnston J. Spencer, Price H. James. Feast and famine in plant genomes. Genetica. 2002 May;115(1):37–47. doi: 10.1023/a:1016020030189. [DOI] [PubMed] [Google Scholar]
  14. Wright R. J., Thaxton P. M., El-Zik K. M., Paterson A. H. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics. 1998 Aug;149(4):1987–1996. doi: 10.1093/genetics/149.4.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zdobnov E. M., Apweiler R. InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001 Sep;17(9):847–848. doi: 10.1093/bioinformatics/17.9.847. [DOI] [PubMed] [Google Scholar]
  16. Zhao X. P., Si Y., Hanson R. E., Crane C. F., Price H. J., Stelly D. M., Wendel J. F., Paterson A. H. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res. 1998 May;8(5):479–492. doi: 10.1101/gr.8.5.479. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES