Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):419–436. doi: 10.1534/genetics.166.1.419

High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya.

Hao Ma 1, Paul H Moore 1, Zhiyong Liu 1, Minna S Kim 1, Qingyi Yu 1, Maureen M M Fitch 1, Terry Sekioka 1, Andrew H Paterson 1, Ray Ming 1
PMCID: PMC1470706  PMID: 15020433

Abstract

A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya.

Full Text

The Full Text of this article is available as a PDF (621.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Blanco C., Peeters A. J., Koornneef M., Lister C., Dean C., van den Bosch N., Pot J., Kuiper M. T. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 1998 Apr;14(2):259–271. doi: 10.1046/j.1365-313x.1998.00115.x. [DOI] [PubMed] [Google Scholar]
  2. Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
  3. Bonierbale M. W., Plaisted R. L., Tanksley S. D. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics. 1988 Dec;120(4):1095–1103. doi: 10.1093/genetics/120.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyko Elena, Kalendar Ruslan, Korzun Victor, Fellers John, Korol Abraham, Schulman Alan H., Gill Bikram S. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol. 2002 Mar-Apr;48(5-6):767–790. doi: 10.1023/a:1014831511810. [DOI] [PubMed] [Google Scholar]
  5. Copenhaver G. P., Nickel K., Kuromori T., Benito M. I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L. D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999 Dec 24;286(5449):2468–2474. doi: 10.1126/science.286.5449.2468. [DOI] [PubMed] [Google Scholar]
  6. Davis C. R., Kempainen R. R., Srodes M. S., McClung C. R. Correlation of the physical and genetic maps of the centromeric region of the right arm of linkage group III of Neurospora crassa. Genetics. 1994 Apr;136(4):1297–1306. doi: 10.1093/genetics/136.4.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis G. L., McMullen M. D., Baysdorfer C., Musket T., Grant D., Staebell M., Xu G., Polacco M., Koster L., Melia-Hancock S. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics. 1999 Jul;152(3):1137–1172. doi: 10.1093/genetics/152.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deputy J. C., Ming R., Ma H., Liu Z., Fitch M. M. M., Wang M., Manshardt R., Stiles J. I. Molecular markers for sex determination in papaya ( Carica papaya L.). Theor Appl Genet. 2002 Jul 12;106(1):107–111. doi: 10.1007/s00122-002-0995-0. [DOI] [PubMed] [Google Scholar]
  9. Draye X., Lin Y. R., Qian X. Y., Bowers J. E., Burow G. B., Morrell P. L., Peterson D. G., Presting G. G., Ren S. X., Wing R. A. Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol. 2001 Mar;125(3):1325–1341. doi: 10.1104/pp.125.3.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonsalves D. Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol. 1998;36:415–437. doi: 10.1146/annurev.phyto.36.1.415. [DOI] [PubMed] [Google Scholar]
  11. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. doi: 10.1093/genetics/148.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inamdar N. M., Ehrlich K. C., Ehrlich M. CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol Biol. 1991 Jul;17(1):111–123. doi: 10.1007/BF00036811. [DOI] [PubMed] [Google Scholar]
  13. Kim M. S., Moore P. H., Zee F., Fitch M. M. M., Steiger D. L., Manshardt R. M., Paull R. E., Drew R. A., Sekioka T., Ming R. Genetic diversity of Carica papaya as revealed by AFLP markers. Genome. 2002 Jun;45(3):503–512. doi: 10.1139/g02-012. [DOI] [PubMed] [Google Scholar]
  14. Klein P. E., Klein R. R., Cartinhour S. W., Ulanch P. E., Dong J., Obert J. A., Morishige D. T., Schlueter S. D., Childs K. L., Ale M. A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res. 2000 Jun;10(6):789–807. doi: 10.1101/gr.10.6.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  16. Lukacsovich T., Waldman A. S. Suppression of intrachromosomal gene conversion in mammalian cells by small degrees of sequence divergence. Genetics. 1999 Apr;151(4):1559–1568. doi: 10.1093/genetics/151.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mackill D. J., Zhang Z., Redoña E. D., Colowit P. M. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome. 1996 Oct;39(5):969–977. doi: 10.1139/g96-121. [DOI] [PubMed] [Google Scholar]
  18. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  19. Menz M. A., Klein R. R., Mullet J. E., Obert J. A., Unruh N. C., Klein P. E. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol. 2002 Mar-Apr;48(5-6):483–499. doi: 10.1023/a:1014831302392. [DOI] [PubMed] [Google Scholar]
  20. Orimo H., Hayashi Y., Fukunaga M., Sone T., Fujiwara S., Shiraki M., Kushida K., Miyamoto S., Soen S., Nishimura J. Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab. 2001;19(6):331–337. doi: 10.1007/s007740170001. [DOI] [PubMed] [Google Scholar]
  21. Ozias-Akins P., Roche D., Hanna W. W. Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5127–5132. doi: 10.1073/pnas.95.9.5127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paterson A. H., Bowers J. E., Burow M. D., Draye X., Elsik C. G., Jiang C. X., Katsar C. S., Lan T. H., Lin Y. R., Ming R. Comparative genomics of plant chromosomes. Plant Cell. 2000 Sep;12(9):1523–1540. doi: 10.1105/tpc.12.9.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peters J. L., Constandt H., Neyt P., Cnops G., Zethof J., Zabeau M., Gerats T. A physical amplified fragment-length polymorphism map of Arabidopsis. Plant Physiol. 2001 Dec;127(4):1579–1589. [PMC free article] [PubMed] [Google Scholar]
  24. Round E. K., Flowers S. K., Richards E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 1997 Nov;7(11):1045–1053. doi: 10.1101/gr.7.11.1045. [DOI] [PubMed] [Google Scholar]
  25. Steiger L., Nagai C., Moore H., Morden W., Osgood V., Ming R. AFLP analysis of genetic diversity within and among Coffea arabica cultivars. Theor Appl Genet. 2002 Jun 14;105(2-3):209–215. doi: 10.1007/s00122-002-0939-8. [DOI] [PubMed] [Google Scholar]
  26. Tanksley S. D., Ganal M. W., Martin G. B. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 1995 Feb;11(2):63–68. doi: 10.1016/s0168-9525(00)88999-4. [DOI] [PubMed] [Google Scholar]
  27. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Urasaki N., Tokumoto M., Tarora K., Ban Y., Kayano T., Tanaka H., Oku H., Chinen I., Terauchi R. A male and hermaphrodite specific RAPD marker for papaya ( Carica papayaL.). Theor Appl Genet. 2002 Feb;104(2-3):281–285. doi: 10.1007/s001220100693. [DOI] [PubMed] [Google Scholar]
  29. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu Jianzhong, Maehara Tomoko, Shimokawa Takanori, Yamamoto Shinichi, Harada Chizuko, Takazaki Yuka, Ono Nozomi, Mukai Yoshiyuki, Koike Kazuhiro, Yazaki Jyunshi. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell. 2002 Mar;14(3):525–535. doi: 10.1105/tpc.010274. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES