Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 15;25(22):4562–4569. doi: 10.1093/nar/25.22.4562

Placement of the alpha-sarcin loop within the 50S subunit: evidence derived using a photolabile oligodeoxynucleotide probe.

P Muralikrishna 1, R W Alexander 1, B S Cooperman 1
PMCID: PMC147071  PMID: 9358167

Abstract

We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe and its exploitation in identifying 50S ribosomal subunit components neighboring the alpha-sarcin loop. The probe is complementary to 23S rRNA nt 2653-2674. Photolysis of the complex formed between the probe and 50S subunits leads to site-specific probe photoincorporation into proteins L2, the most highly labeled protein, L1, L15, L16 and L27, labeled to intermediate extents, and L5, L9, L17 and L24, each labeled to a minor extent. Portions of each of these proteins thus lie within 23 A of nt U2653. These results lead us to conclude that the alpha-sarcin loop is located at the base of the L1 projection within the 50S subunit. Such placement, near the peptidyl transferase center, provides a rationale for the extreme sensitivity of ribosomal function to cleavage of the alpha-sarcin loop.

Full Text

The Full Text of this article is available as a PDF (178.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AEvarsson A., Brazhnikov E., Garber M., Zheltonosova J., Chirgadze Y., al-Karadaghi S., Svensson L. A., Liljas A. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 1994 Aug 15;13(16):3669–3677. doi: 10.1002/j.1460-2075.1994.tb06676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander R. W., Muralikrishna P., Cooperman B. S. Ribosomal components neighboring the conserved 518-533 loop of 16S rRNA in 30S subunits. Biochemistry. 1994 Oct 11;33(40):12109–12118. doi: 10.1021/bi00206a014. [DOI] [PubMed] [Google Scholar]
  3. Bilgin N., Ehrenberg M. Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J Mol Biol. 1994 Jan 21;235(3):813–824. doi: 10.1006/jmbi.1994.1041. [DOI] [PubMed] [Google Scholar]
  4. Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 1995 Jun 1;230(2):365–383. [PubMed] [Google Scholar]
  5. Cooperman B. S., Wooten T., Romero D. P., Traut R. R. Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1087–1094. doi: 10.1139/o95-117. [DOI] [PubMed] [Google Scholar]
  6. Czworkowski J., Wang J., Steitz T. A., Moore P. B. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 1994 Aug 15;13(16):3661–3668. doi: 10.1002/j.1460-2075.1994.tb06675.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denman R., Colgan J., Nurse K., Ofengand J. Crosslinking of the anticodon of P site bound tRNA to C-1400 of E.coli 16S RNA does not require the participation of the 50S subunit. Nucleic Acids Res. 1988 Jan 11;16(1):165–178. doi: 10.1093/nar/16.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Egebjerg J., Christiansen J., Garrett R. A. Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. J Mol Biol. 1991 Nov 20;222(2):251–264. doi: 10.1016/0022-2836(91)90210-w. [DOI] [PubMed] [Google Scholar]
  9. Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987 Apr 25;262(12):5908–5912. [PubMed] [Google Scholar]
  10. Endo Y., Wool I. G. The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem. 1982 Aug 10;257(15):9054–9060. [PubMed] [Google Scholar]
  11. Fernandez-Puentes C., Vazquez D. Effects of some proteins that inactivate the eukaryotic ribosome. FEBS Lett. 1977;78(1):143–146. doi: 10.1016/0014-5793(77)80292-5. [DOI] [PubMed] [Google Scholar]
  12. Giri L., Hill W. E., Wittmann H. G., Wittmann-Liebold B. Ribosomal proteins: their structure and spatial arrangement in prokaryotic ribosomes. Adv Protein Chem. 1984;36:1–78. doi: 10.1016/s0065-3233(08)60295-8. [DOI] [PubMed] [Google Scholar]
  13. Girshovich A. S., Bochkareva E. S., Vasiliev V. D. Localization of elongation factor Tu on the ribosome. FEBS Lett. 1986 Mar 3;197(1-2):192–198. doi: 10.1016/0014-5793(86)80325-8. [DOI] [PubMed] [Google Scholar]
  14. Girshovich A. S., Kurtskhalia T. V., Ovchinnikov YuA, Vasiliev V. D. Localization of the elongation factor G on Escherichia coli ribosome. FEBS Lett. 1981 Jul 20;130(1):54–59. doi: 10.1016/0014-5793(81)80664-3. [DOI] [PubMed] [Google Scholar]
  15. Glück A., Endo Y., Wool I. G. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop. Nucleic Acids Res. 1994 Feb 11;22(3):321–324. doi: 10.1093/nar/22.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glück A., Wool I. G. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site. J Mol Biol. 1996 Mar 15;256(5):838–848. doi: 10.1006/jmbi.1996.0130. [DOI] [PubMed] [Google Scholar]
  17. Gulle H., Hoppe E., Osswald M., Greuer B., Brimacombe R., Stöffler G. RNA-protein cross-linking in Escherichia coli 50S ribosomal subunits; determination of sites on 23S RNA that are cross-linked to proteins L2, L4, L24 and L27 by treatment with 2-iminothiolane. Nucleic Acids Res. 1988 Feb 11;16(3):815–832. doi: 10.1093/nar/16.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hausner T. P., Atmadja J., Nierhaus K. H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie. 1987 Sep;69(9):911–923. doi: 10.1016/0300-9084(87)90225-2. [DOI] [PubMed] [Google Scholar]
  19. Herold M., Nierhaus K. H. Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. J Biol Chem. 1987 Jun 25;262(18):8826–8833. [PubMed] [Google Scholar]
  20. Hill W. E., Bucklin D. J., Bullard J. M., Galbralth A. L., Jammi N. V., Rettberg C. C., Sawyer B. S., van Waes M. A. Identification of ribosome-ligand interactions using cleavage reagents. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1033–1039. doi: 10.1139/o95-110. [DOI] [PubMed] [Google Scholar]
  21. Joseph S., Noller H. F. Mapping the rRNA neighborhood of the acceptor end of tRNA in the ribosome. EMBO J. 1996 Feb 15;15(4):910–916. [PMC free article] [PubMed] [Google Scholar]
  22. Kenny J. W., Traut R. R. Identification of fifteen neighboring protein pairs in the Escherichia coli 50 S ribosomal subunit crosslinked with 2-iminothiolane. J Mol Biol. 1979 Jan 25;127(3):243–263. doi: 10.1016/0022-2836(79)90328-0. [DOI] [PubMed] [Google Scholar]
  23. Kerlavage A. R., Cooperman B. S. Reconstitution of Escherichia coli ribosomes containing puromycin-modified S14: functional effects of the photoaffinity labeling of a protein essential for tRNA binding. Biochemistry. 1986 Dec 2;25(24):8002–8010. doi: 10.1021/bi00372a032. [DOI] [PubMed] [Google Scholar]
  24. Kerlavage A. R., Weitzmann C. J., Cooperman B. S. Application of high-performance liquid chromatography to the reconstitution of ribosomal subunits. J Chromatogr. 1984 Dec 28;317:201–212. doi: 10.1016/s0021-9673(01)91660-7. [DOI] [PubMed] [Google Scholar]
  25. Leffers H., Egebjerg J., Andersen A., Christensen T., Garrett R. A. Domain VI of Escherichia coli 23 S ribosomal RNA. Structure, assembly and function. J Mol Biol. 1988 Dec 5;204(3):507–522. doi: 10.1016/0022-2836(88)90351-8. [DOI] [PubMed] [Google Scholar]
  26. Liu R., Liebman S. W. A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA. 1996 Mar;2(3):254–263. [PMC free article] [PubMed] [Google Scholar]
  27. Melançon P., Tapprich W. E., Brakier-Gingras L. Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading. J Bacteriol. 1992 Dec;174(24):7896–7901. doi: 10.1128/jb.174.24.7896-7901.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meyer H. A., Triana-Alonso F., Spahn C. M., Twardowski T., Sobkiewicz A., Nierhaus K. H. Effects of antisense DNA against the alpha-sarcin stem-loop structure of the ribosomal 23S rRNA. Nucleic Acids Res. 1996 Oct 15;24(20):3996–4002. doi: 10.1093/nar/24.20.3996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller S. P., Bodley J. W. Alpha-sarcin cleavage of ribosomal RNA is inhibited by the binding of elongation factor G or thiostrepton to the ribosome. Nucleic Acids Res. 1991 Apr 11;19(7):1657–1660. doi: 10.1093/nar/19.7.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  31. Muralikrishna P., Cooperman B. S. A photolabile oligodeoxyribonucleotide probe of the decoding site in the small subunit of the Escherichia coli ribosome: identification of neighboring ribosomal components. Biochemistry. 1994 Feb 15;33(6):1392–1398. doi: 10.1021/bi00172a015. [DOI] [PubMed] [Google Scholar]
  32. Muralikrishna P., Cooperman B. S. A photolabile oligodeoxyribonucleotide probe of the peptidyltransferase center: identification of neighboring ribosomal components. Biochemistry. 1991 Jun 4;30(22):5421–5428. doi: 10.1021/bi00236a014. [DOI] [PubMed] [Google Scholar]
  33. Muralikrishna P., Cooperman B. S. Ribosomal components neighboring the 2475 loop in Escherichia coli 50S subunits. Biochemistry. 1995 Jan 10;34(1):115–121. doi: 10.1021/bi00001a014. [DOI] [PubMed] [Google Scholar]
  34. Nag B., Glitz D. G., Tewari D. S., Traut R. R. Probing the functional role and localization of Escherichia coli ribosomal protein L16 with a monoclonal antibody. J Biol Chem. 1991 Jun 15;266(17):11116–11121. [PubMed] [Google Scholar]
  35. Nag B., Tewari D. S., Sommer A., Olson H. M., Glitz D. G., Traut R. R. Probing ribosome function and the location of Escherichia coli ribosomal protein L5 with a monoclonal antibody. J Biol Chem. 1987 Jul 15;262(20):9681–9687. [PubMed] [Google Scholar]
  36. Nierhaus K. H., Schilling-Bartetzko S., Twardowski T. The two main states of the elongating ribosome and the role of the alpha-sarcin stem-loop structure of 23S RNA. Biochimie. 1992 Apr;74(4):403–410. doi: 10.1016/0300-9084(92)90118-x. [DOI] [PubMed] [Google Scholar]
  37. O'Connor M., Dahlberg A. E. The influence of base identity and base pairing on the function of the alpha-sarcin loop of 23S rRNA. Nucleic Acids Res. 1996 Jul 15;24(14):2701–2705. doi: 10.1093/nar/24.14.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Porse B. T., Garrett R. A. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach. J Mol Biol. 1995 May 26;249(1):1–10. doi: 10.1006/jmbi.1995.0276. [DOI] [PubMed] [Google Scholar]
  39. Sacco G., Drickamer K., Wool I. G. The primary structure of the cytotoxin alpha-sarcin. J Biol Chem. 1983 May 10;258(9):5811–5818. [PubMed] [Google Scholar]
  40. Szewczak A. A., Moore P. B., Chang Y. L., Wool I. G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9581–9585. doi: 10.1073/pnas.90.20.9581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
  42. Tapio S., Isaksson L. A. Base 2661 in Escherichia coli 23S rRNA influences the binding of elongation factor Tu during protein synthesis in vivo. Eur J Biochem. 1991 Dec 18;202(3):981–984. doi: 10.1111/j.1432-1033.1991.tb16459.x. [DOI] [PubMed] [Google Scholar]
  43. Walleczek J., Schüler D., Stöffler-Meilicke M., Brimacombe R., Stöffler G. A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 1988 Nov;7(11):3571–3576. doi: 10.1002/j.1460-2075.1988.tb03234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. White G. A., Wood T., Hill W. E. Probing the alpha-sarcin region of Escherichia coli 23S rRNA with a cDNA oligomer. Nucleic Acids Res. 1988 Nov 25;16(22):10817–10831. doi: 10.1093/nar/16.22.10817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wool I. G., Glück A., Endo Y. Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci. 1992 Jul;17(7):266–269. doi: 10.1016/0968-0004(92)90407-z. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES