Abstract
The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped.
Full Text
The Full Text of this article is available as a PDF (283.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarts M. G., te Lintel Hekkert B., Holub E. B., Beynon J. L., Stiekema W. J., Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact. 1998 Apr;11(4):251–258. doi: 10.1094/MPMI.1998.11.4.251. [DOI] [PubMed] [Google Scholar]
- Akhunov Eduard D., Goodyear Andrew W., Geng Shu, Qi Li-Li, Echalier Benjamin, Gill Bikram S., Miftahudin, Gustafson J. Perry, Lazo Gerard, Chao Shiaoman. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 2003 Apr 14;13(5):753–763. doi: 10.1101/gr.808603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Bent A. F., Kunkel B. N., Dahlbeck D., Brown K. L., Schmidt R., Giraudat J., Leung J., Staskawicz B. J. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994 Sep 23;265(5180):1856–1860. doi: 10.1126/science.8091210. [DOI] [PubMed] [Google Scholar]
- Bittner-Eddy P. D., Crute I. R., Holub E. B., Beynon J. L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000 Jan;21(2):177–188. doi: 10.1046/j.1365-313x.2000.00664.x. [DOI] [PubMed] [Google Scholar]
- Botella M. A., Coleman M. J., Hughes D. E., Nishimura M. T., Jones J. D., Somerville S. C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 1997 Nov;12(5):1197–1211. doi: 10.1046/j.1365-313x.1997.12051197.x. [DOI] [PubMed] [Google Scholar]
- Botella M. A., Parker J. E., Frost L. N., Bittner-Eddy P. D., Beynon J. L., Daniels M. J., Holub E. B., Jones J. D. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell. 1998 Nov;10(11):1847–1860. doi: 10.1105/tpc.10.11.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai D., Kleine M., Kifle S., Harloff H. J., Sandal N. N., Marcker K. A., Klein-Lankhorst R. M., Salentijn E. M., Lange W., Stiekema W. J. Positional cloning of a gene for nematode resistance in sugar beet. Science. 1997 Feb 7;275(5301):832–834. doi: 10.1126/science.275.5301.832. [DOI] [PubMed] [Google Scholar]
- Chin D. B., Arroyo-Garcia R., Ochoa O. E., Kesseli R. V., Lavelle D. O., Michelmore R. W. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics. 2001 Feb;157(2):831–849. doi: 10.1093/genetics/157.2.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins N. C., Webb C. A., Seah S., Ellis J. G., Hulbert S. H., Pryor A. The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact. 1998 Oct;11(10):968–978. doi: 10.1094/MPMI.1998.11.10.968. [DOI] [PubMed] [Google Scholar]
- Collins N., Drake J., Ayliffe M., Sun Q., Ellis J., Hulbert S., Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell. 1999 Jul;11(7):1365–1376. doi: 10.1105/tpc.11.7.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooley M. B., Pathirana S., Wu H. J., Kachroo P., Klessig D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell. 2000 May;12(5):663–676. doi: 10.1105/tpc.12.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K., Jones J. D. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell. 1996 Feb 9;84(3):451–459. doi: 10.1016/s0092-8674(00)81290-8. [DOI] [PubMed] [Google Scholar]
- Ernst Karin, Kumar Amar, Kriseleit Doris, Kloos Dorothee-U, Phillips Mark S., Ganal Martin W. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J. 2002 Jul;31(2):127–136. doi: 10.1046/j.1365-313x.2002.01341.x. [DOI] [PubMed] [Google Scholar]
- Feuillet C., Keller B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8265–8270. doi: 10.1073/pnas.96.14.8265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feuillet Catherine, Keller Beat. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot. 2002 Jan;89(1):3–10. doi: 10.1093/aob/mcf008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill K. S., Gill B. S., Endo T. R., Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996 Dec;144(4):1883–1891. doi: 10.1093/genetics/144.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goff Stephen A., Ricke Darrell, Lan Tien-Hung, Presting Gernot, Wang Ronglin, Dunn Molly, Glazebrook Jane, Sessions Allen, Oeller Paul, Varma Hemant. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002 Apr 5;296(5565):92–100. doi: 10.1126/science.1068275. [DOI] [PubMed] [Google Scholar]
- Grant M. R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R. W., Dangl J. L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science. 1995 Aug 11;269(5225):843–846. doi: 10.1126/science.7638602. [DOI] [PubMed] [Google Scholar]
- Halterman D., Zhou F., Wei F., Wise R. P., Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 2001 Feb;25(3):335–348. doi: 10.1046/j.1365-313x.2001.00982.x. [DOI] [PubMed] [Google Scholar]
- Hammond-Kosack Kim E., Jones Jonathan D. G. PLANT DISEASE RESISTANCE GENES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):575–607. doi: 10.1146/annurev.arplant.48.1.575. [DOI] [PubMed] [Google Scholar]
- Johal G. S., Briggs S. P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science. 1992 Nov 6;258(5084):985–987. doi: 10.1126/science.1359642. [DOI] [PubMed] [Google Scholar]
- Kanazin V., Marek L. F., Shoemaker R. C. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11746–11750. doi: 10.1073/pnas.93.21.11746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawchuk L. M., Hachey J., Lynch D. R., Kulcsar F., van Rooijen G., Waterer D. R., Robertson A., Kokko E., Byers R., Howard R. J. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A. 2001 May 1;98(11):6511–6515. doi: 10.1073/pnas.091114198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence G. J., Finnegan E. J., Ayliffe M. A., Ellis J. G. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell. 1995 Aug;7(8):1195–1206. doi: 10.1105/tpc.7.8.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leister D., Ballvora A., Salamini F., Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet. 1996 Dec;14(4):421–429. doi: 10.1038/ng1296-421. [DOI] [PubMed] [Google Scholar]
- Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
- McDowell J. M., Dhandaydham M., Long T. A., Aarts M. G., Goff S., Holub E. B., Dangl J. L. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell. 1998 Nov;10(11):1861–1874. doi: 10.1105/tpc.10.11.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers B. C., Dickerman A. W., Michelmore R. W., Sivaramakrishnan S., Sobral B. W., Young N. D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999 Nov;20(3):317–332. doi: 10.1046/j.1365-313x.1999.t01-1-00606.x. [DOI] [PubMed] [Google Scholar]
- Milligan S. B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P., Williamson V. M. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell. 1998 Aug;10(8):1307–1319. doi: 10.1105/tpc.10.8.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mondragón-Palomino Mariana, Meyers Blake C., Michelmore Richard W., Gaut Brandon S. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 2002 Sep;12(9):1305–1315. doi: 10.1101/gr.159402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noël L., Moores T. L., van Der Biezen E. A., Parniske M., Daniels M. J., Parker J. E., Jones J. D. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell. 1999 Nov;11(11):2099–2112. [PMC free article] [PubMed] [Google Scholar]
- Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell. 1997 Apr;9(4):521–532. doi: 10.1105/tpc.9.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panstruga R., Büschges R., Piffanelli P., Schulze-Lefert P. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 1998 Feb 15;26(4):1056–1062. doi: 10.1093/nar/26.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richly Erik, Kurth Joachim, Leister Dario. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol. 2002 Jan;19(1):76–84. doi: 10.1093/oxfordjournals.molbev.a003984. [DOI] [PubMed] [Google Scholar]
- Sakamoto K., Tada Y., Yokozeki Y., Akagi H., Hayashi N., Fujimura T., Ichikawa N. Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol Biol. 1999 Jul;40(5):847–855. doi: 10.1023/a:1006244323934. [DOI] [PubMed] [Google Scholar]
- Salmeron J. M., Oldroyd G. E., Rommens C. M., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D., Staskawicz B. J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell. 1996 Jul 12;86(1):123–133. doi: 10.1016/s0092-8674(00)80083-5. [DOI] [PubMed] [Google Scholar]
- SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
- SanMiguel Phillip J., Ramakrishna Wusirika, Bennetzen Jeffrey L., Busso Carlos S., Dubcovsky Jorge. Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct Integr Genomics. 2002 Apr 12;2(1-2):70–80. doi: 10.1007/s10142-002-0056-4. [DOI] [PubMed] [Google Scholar]
- Sandhu Devinder, Gill Kulvinder S. Gene-containing regions of wheat and the other grass genomes. Plant Physiol. 2002 Mar;128(3):803–811. doi: 10.1104/pp.010745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seah S., Spielmeyer W., Jahier J., Sivasithamparam K., Lagudah E. S. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant Microbe Interact. 2000 Mar;13(3):334–341. doi: 10.1094/MPMI.2000.13.3.334. [DOI] [PubMed] [Google Scholar]
- Seah S., Spielmeyer W., Jahier J., Sivasithamparam K., Lagudah E. S. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant Microbe Interact. 2000 Mar;13(3):334–341. doi: 10.1094/MPMI.2000.13.3.334. [DOI] [PubMed] [Google Scholar]
- Shen K. A., Meyers B. C., Islam-Faridi M. N., Chin D. B., Stelly D. M., Michelmore R. W. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact. 1998 Aug;11(8):815–823. doi: 10.1094/MPMI.1998.11.8.815. [DOI] [PubMed] [Google Scholar]
- Shen Katherine A., Chin Doris B., Arroyo-Garcia Rosa, Ochoa Oswaldo E., Lavelle Dean O., Wroblewski Tadeusz, Meyers Blake C., Michelmore Richard W. Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant Microbe Interact. 2002 Mar;15(3):251–261. doi: 10.1094/MPMI.2002.15.3.251. [DOI] [PubMed] [Google Scholar]
- Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995 Dec 15;270(5243):1804–1806. doi: 10.1126/science.270.5243.1804. [DOI] [PubMed] [Google Scholar]
- Sun Q., Collins N. C., Ayliffe M., Smith S. M., Drake J., Pryor T., Hulbert S. H. Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics. 2001 May;158(1):423–438. doi: 10.1093/genetics/158.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traut T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem. 1994 May 15;222(1):9–19. doi: 10.1111/j.1432-1033.1994.tb18835.x. [DOI] [PubMed] [Google Scholar]
- Warren R. F., Henk A., Mowery P., Holub E., Innes R. W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell. 1998 Sep;10(9):1439–1452. doi: 10.1105/tpc.10.9.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E., Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 2001 May;26(3):307–316. doi: 10.1046/j.1365-313x.2001.01028.x. [DOI] [PubMed] [Google Scholar]
- Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A. 2003 May 1;100(10):6263–6268. doi: 10.1073/pnas.0937399100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura S., Yamanouchi U., Katayose Y., Toki S., Wang Z. X., Kono I., Kurata N., Yano M., Iwata N., Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1663–1668. doi: 10.1073/pnas.95.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Y. G., Buss G. R., Maroof M. A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11751–11756. doi: 10.1073/pnas.93.21.11751. [DOI] [PMC free article] [PubMed] [Google Scholar]