Skip to main content
Genetics logoLink to Genetics
. 2004 Feb;166(2):913–924. doi: 10.1534/genetics.166.2.913

Hybrid breakdown caused by substitution of the X chromosome between two mouse subspecies.

Ayako Oka 1, Akihiko Mita 1, Noriko Sakurai-Yamatani 1, Hiromi Yamamoto 1, Nobuo Takagi 1, Toshiyuki Takano-Shimizu 1, Kiyotaka Toshimori 1, Kazuo Moriwaki 1, Toshihiko Shiroishi 1
PMCID: PMC1470736  PMID: 15020476

Abstract

Hybrid breakdown is a type of reproductive failure that appears after the F2 generation of crosses between different species or subspecies. It is caused by incompatibility between interacting genes. Genetic analysis of hybrid breakdown, particularly in higher animals, has been hampered by its complex nature (i.e., it involves more than two genes, and the phenotype is recessive). We studied hybrid breakdown using a new consomic strain, C57BL/6J-X(MSM), in which the X chromosome of C57BL/6J (derived mostly from Mus musculus domesticus) is substituted by the X chromosome of the MSM/Ms strain (M. m. molossinus). Males of this consomic strain are sterile, whereas F1 hybrids between C57BL/6J and MSM/Ms are completely fertile. The C57BL/6J-X(MSM) males showed reduced testis weight with variable defects in spermatogenesis and abnormal sperm head morphology. We conducted quantitative trait locus (QTL) analysis for these traits to map the X-linked genetic factors responsible for the sterility. This analysis successfully detected at least three distinct loci for the sperm head morphology and one for the testis weight. This study revealed that incompatibility of interactions of X-linked gene(s) with autosomal and/or Y-linked gene(s) causes the hybrid breakdown between the genetically distant C57BL/6J and MSM/Ms strains.

Full Text

The Full Text of this article is available as a PDF (510.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartoov B., Ben-Barak J., Mayevsky A., Sneider M., Yogev L., Lightman A. Sperm motility index: a new parameter for human sperm evaluation. Fertil Steril. 1991 Jul;56(1):108–112. doi: 10.1016/s0015-0282(16)54427-6. [DOI] [PubMed] [Google Scholar]
  2. Cooke Howard J., Saunders Philippa T. K. Mouse models of male infertility. Nat Rev Genet. 2002 Oct;3(10):790–801. doi: 10.1038/nrg911. [DOI] [PubMed] [Google Scholar]
  3. Didion B. A., Dobrinsky J. R., Giles J. R., Graves C. N. Staining procedure to detect viability and the true acrosome reaction in spermatozoa of various species. Gamete Res. 1989 Jan;22(1):51–57. doi: 10.1002/mrd.1120220106. [DOI] [PubMed] [Google Scholar]
  4. Elliott R. W., Miller D. R., Pearsall R. S., Hohman C., Zhang Y., Poslinski D., Tabaczynski D. A., Chapman V. M. Genetic analysis of testis weight and fertility in an interspecies hybrid congenic strain for Chromosome X. Mamm Genome. 2001 Jan;12(1):45–51. doi: 10.1007/s003350010234. [DOI] [PubMed] [Google Scholar]
  5. Forejt J., Iványi P. Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.). Genet Res. 1974 Oct;24(2):189–206. doi: 10.1017/s0016672300015214. [DOI] [PubMed] [Google Scholar]
  6. Forejt J., Vincek V., Klein J., Lehrach H., Loudová-Micková M. Genetic mapping of the t-complex region on mouse chromosome 17 including the Hybrid sterility-1 gene. Mamm Genome. 1991;1(2):84–91. doi: 10.1007/BF02443783. [DOI] [PubMed] [Google Scholar]
  7. Guénet J. L., Nagamine C., Simon-Chazottes D., Montagutelli X., Bonhomme F. Hst-3: an X-linked hybrid sterility gene. Genet Res. 1990 Oct-Dec;56(2-3):163–165. doi: 10.1017/s0016672300035254. [DOI] [PubMed] [Google Scholar]
  8. Kikkawa Y., Miura I., Takahama S., Wakana S., Yamazaki Y., Moriwaki K., Shiroishi T., Yonekawa H. Microsatellite database for MSM/Ms and JF1/Ms, molossinus-derived inbred strains. Mamm Genome. 2001 Sep;12(9):750–752. doi: 10.1007/s003350030008. [DOI] [PubMed] [Google Scholar]
  9. Matsuda Y., Hirobe T., Chapman V. M. Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4850–4854. doi: 10.1073/pnas.88.11.4850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matsuda Y., Imai H. T., Moriwaki K., Kondo K., Bonhomme F. X-Y chromosome dissociation in wild derived Mus musculus subspecies, laboratory mice, and their F1 hybrids. Cytogenet Cell Genet. 1982;34(3):241–252. doi: 10.1159/000131811. [DOI] [PubMed] [Google Scholar]
  11. Nadeau J. H., Singer J. B., Matin A., Lander E. S. Analysing complex genetic traits with chromosome substitution strains. Nat Genet. 2000 Mar;24(3):221–225. doi: 10.1038/73427. [DOI] [PubMed] [Google Scholar]
  12. Perry J., Palmer S., Gabriel A., Ashworth A. A short pseudoautosomal region in laboratory mice. Genome Res. 2001 Nov;11(11):1826–1832. doi: 10.1101/gr.203001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pilder S. H., Hammer M. F., Silver L. M. A novel mouse chromosome 17 hybrid sterility locus: implications for the origin of t haplotypes. Genetics. 1991 Sep;129(1):237–246. doi: 10.1093/genetics/129.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pilder S. H. Identification and linkage mapping of Hst7, a new M. spretus/M. m. domesticus chromosome 17 hybrid sterility locus. Mamm Genome. 1997 Apr;8(4):290–291. doi: 10.1007/s003359900415. [DOI] [PubMed] [Google Scholar]
  15. Pilder S. H., Olds-Clarke P., Orth J. M., Jester W. F., Dugan L. Hst7: a male sterility mutation perturbing sperm motility, flagellar assembly, and mitochondrial sheath differentiation. J Androl. 1997 Nov-Dec;18(6):663–671. [PubMed] [Google Scholar]
  16. Trachtulec Z., Mnuková-Fajdelová M., Hamvas R. M., Gregorová S., Mayer W. E., Lehrach H. R., Vincek V., Forejt J., Klein J. Isolation of candidate hybrid sterility 1 genes by cDNA selection in a 1.1 megabase pair region on mouse chromosome 17. Mamm Genome. 1997 May;8(5):312–316. doi: 10.1007/s003359900430. [DOI] [PubMed] [Google Scholar]
  17. Uchida K., Tsuchida J., Tanaka H., Koga M., Nishina Y., Nozaki M., Yoshinaga K., Toshimori K., Matsumiya K., Okuyama A. Cloning and characterization of a complementary deoxyribonucleic acid encoding haploid-specific alanine-rich acidic protein located on chromosome-X. Biol Reprod. 2000 Oct;63(4):993–999. doi: 10.1095/biolreprod63.4.993. [DOI] [PubMed] [Google Scholar]
  18. Wade Claire M., Kulbokas Edward J., 3rd, Kirby Andrew W., Zody Michael C., Mullikin James C., Lander Eric S., Lindblad-Toh Kerstin, Daly Mark J. The mosaic structure of variation in the laboratory mouse genome. Nature. 2002 Dec 5;420(6915):574–578. doi: 10.1038/nature01252. [DOI] [PubMed] [Google Scholar]
  19. Whittingham D. G., Leibo S. P., Mazur P. Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science. 1972 Oct 27;178(4059):411–414. [PubMed] [Google Scholar]
  20. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES