Skip to main content
Genetics logoLink to Genetics
. 2004 Feb;166(2):681–692. doi: 10.1534/genetics.166.2.681

Distinct signatures for mutator sensitivity of lacZ reversions and for the spectrum of lacI/lacO forward mutations on the chromosome of nondividing Escherichia coli.

Shanti M Bharatan 1, Manjula Reddy 1, J Gowrishankar 1
PMCID: PMC1470738  PMID: 15020459

Abstract

A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to "instantaneous gratification" models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.

Full Text

The Full Text of this article is available as a PDF (235.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams W. T., Skopek T. R. Statistical test for the comparison of samples from mutational spectra. J Mol Biol. 1987 Apr 5;194(3):391–396. doi: 10.1016/0022-2836(87)90669-3. [DOI] [PubMed] [Google Scholar]
  2. Ambrose M., MacPhee D. G. Catabolite repressors are potent antimutagens in Escherichia coli plate incorporation assays: experiments with glucose, glucose-6-phosphate and methyl-alpha-D-glucopyranoside. Mutat Res. 1998 Feb 26;398(1-2):175–182. doi: 10.1016/s0027-5107(97)00315-1. [DOI] [PubMed] [Google Scholar]
  3. Andersson D. I., Slechta E. S., Roth J. R. Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science. 1998 Nov 6;282(5391):1133–1135. doi: 10.1126/science.282.5391.1133. [DOI] [PubMed] [Google Scholar]
  4. Benov L., Fridovich I. The rate of adaptive mutagenesis in Escherichia coli is enhanced by oxygen (superoxide). Mutat Res. 1996 Oct 25;357(1-2):231–236. doi: 10.1016/0027-5107(96)00128-5. [DOI] [PubMed] [Google Scholar]
  5. Berlyn M. K. Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev. 1998 Sep;62(3):814–984. doi: 10.1128/mmbr.62.3.814-984.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bjedov Ivana, Tenaillon Olivier, Gérard Bénédicte, Souza Valeria, Denamur Erick, Radman Miroslav, Taddei François, Matic Ivan. Stress-induced mutagenesis in bacteria. Science. 2003 May 30;300(5624):1404–1409. doi: 10.1126/science.1082240. [DOI] [PubMed] [Google Scholar]
  7. Blaisdell J. O., Hatahet Z., Wallace S. S. A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G-->T transversions. J Bacteriol. 1999 Oct;181(20):6396–6402. doi: 10.1128/jb.181.20.6396-6402.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridges B. A. Hypermutation in bacteria and other cellular systems. Philos Trans R Soc Lond B Biol Sci. 2001 Jan 29;356(1405):29–39. doi: 10.1098/rstb.2000.0745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bridges B. A., Sekiguchi M., Tajiri T. Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine. Mol Gen Genet. 1996 Jun 12;251(3):352–357. doi: 10.1007/BF02172526. [DOI] [PubMed] [Google Scholar]
  10. Bridges B. A., Timms A. Effect of endogenous carotenoids and defective RpoS sigma factor on spontaneous mutation under starvation conditions in Escherichia coli: evidence for the possible involvement of singlet oxygen. Mutat Res. 1998 Jul 17;403(1-2):21–28. doi: 10.1016/s0027-5107(98)00013-x. [DOI] [PubMed] [Google Scholar]
  11. Bzymek M., Lovett S. T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8319–8325. doi: 10.1073/pnas.111008398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  13. Cariello N. F., Piegorsch W. W., Adams W. T., Skopek T. R. Computer program for the analysis of mutational spectra: application to p53 mutations. Carcinogenesis. 1994 Oct;15(10):2281–2285. doi: 10.1093/carcin/15.10.2281. [DOI] [PubMed] [Google Scholar]
  14. Drake J. W. Spontaneous mutation. Annu Rev Genet. 1991;25:125–146. doi: 10.1146/annurev.ge.25.120191.001013. [DOI] [PubMed] [Google Scholar]
  15. Duncan B. K., Miller J. H. Mutagenic deamination of cytosine residues in DNA. Nature. 1980 Oct 9;287(5782):560–561. doi: 10.1038/287560a0. [DOI] [PubMed] [Google Scholar]
  16. Echols H., Goodman M. F. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477–511. doi: 10.1146/annurev.bi.60.070191.002401. [DOI] [PubMed] [Google Scholar]
  17. Erfle H. L., Walsh D. F., Holcroft J., Hague N., de Boer J. G., Glickman B. W. An efficient laboratory protocol for the sequencing of large numbers of lacI mutants recovered from Big Blue transgenic animals. Environ Mol Mutagen. 1996;28(4):393–396. doi: 10.1002/(SICI)1098-2280(1996)28:4<393::AID-EM13>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  18. Farabaugh P. J., Schmeissner U., Hofer M., Miller J. H. Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol. 1978 Dec 25;126(4):847–857. doi: 10.1016/0022-2836(78)90023-2. [DOI] [PubMed] [Google Scholar]
  19. Farabaugh P. J. Sequence of the lacI gene. Nature. 1978 Aug 24;274(5673):765–769. doi: 10.1038/274765a0. [DOI] [PubMed] [Google Scholar]
  20. Fix D. F., Burns P. A., Glickman B. W. DNA sequence analysis of spontaneous mutation in a PolA1 strain of Escherichia coli indicates sequence-specific effects. Mol Gen Genet. 1987 May;207(2-3):267–272. doi: 10.1007/BF00331588. [DOI] [PubMed] [Google Scholar]
  21. Foster P. L., Cairns J. Mechanisms of directed mutation. Genetics. 1992 Aug;131(4):783–789. doi: 10.1093/genetics/131.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Foster P. L. Directed mutation: between unicorns and goats. J Bacteriol. 1992 Mar;174(6):1711–1716. doi: 10.1128/jb.174.6.1711-1716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gilbert W., Maizels N., Maxam A. Sequences of controlling regions of the lactose operon. Cold Spring Harb Symp Quant Biol. 1974;38:845–855. doi: 10.1101/sqb.1974.038.01.087. [DOI] [PubMed] [Google Scholar]
  24. Godoy V. G., Fox M. S. Transposon stability and a role for conjugational transfer in adaptive mutability. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7393–7398. doi: 10.1073/pnas.130186597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Godoy V. G., Gizatullin F. S., Fox M. S. Some features of the mutability of bacteria during nonlethal selection. Genetics. 2000 Jan;154(1):49–59. doi: 10.1093/genetics/154.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gowrishankar J. Identification of osmoresponsive genes in Escherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation. J Bacteriol. 1985 Oct;164(1):434–445. doi: 10.1128/jb.164.1.434-445.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hall B. G. Adaptive mutagenesis at ebgR is regulated by PhoPQ. J Bacteriol. 1998 Jun;180(11):2862–2865. doi: 10.1128/jb.180.11.2862-2865.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hall B. G. Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J Bacteriol. 1999 Feb;181(4):1149–1155. doi: 10.1128/jb.181.4.1149-1155.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Halliday J. A., Glickman B. W. Mechanisms of spontaneous mutation in DNA repair-proficient Escherichia coli. Mutat Res. 1991 Sep-Oct;250(1-2):55–71. doi: 10.1016/0027-5107(91)90162-h. [DOI] [PubMed] [Google Scholar]
  30. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 1997 Sep 15;11(18):2426–2437. doi: 10.1101/gad.11.18.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hendrickson Heather, Slechta E. Susan, Bergthorsson Ulfar, Andersson Dan I., Roth John R. Amplification-mutagenesis: evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci U S A. 2002 Feb 5;99(4):2164–2169. doi: 10.1073/pnas.032680899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kleman G. L., Strohl W. R. Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol. 1994 Nov;60(11):3952–3958. doi: 10.1128/aem.60.11.3952-3958.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lenski R. E., Slatkin M., Ayala F. J. Mutation and selection in bacterial populations: alternatives to the hypothesis of directed mutation. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2775–2778. doi: 10.1073/pnas.86.8.2775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lesley Joseph A., Waldburger Carey D. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A. J Bacteriol. 2003 Apr;185(8):2563–2570. doi: 10.1128/JB.185.8.2563-2570.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Maki Hisaji. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet. 2002 Jun 11;36:279–303. doi: 10.1146/annurev.genet.36.042602.094806. [DOI] [PubMed] [Google Scholar]
  36. Miller J. H. Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol. 1996;50:625–643. doi: 10.1146/annurev.micro.50.1.625. [DOI] [PubMed] [Google Scholar]
  37. Najrana T., Saito Y., Uraki F., Kubo K., Yamamoto K. Spontaneous and osmium tetroxide-induced mutagenesis in an Escherichia coli strain deficient in both endonuclease III and endonuclease VIII. Mutagenesis. 2000 Mar;15(2):121–125. doi: 10.1093/mutage/15.2.121. [DOI] [PubMed] [Google Scholar]
  38. Piegorsch W. W., Bailer A. J. Statistical approaches for analyzing mutational spectra: some recommendations for categorical data. Genetics. 1994 Jan;136(1):403–416. doi: 10.1093/genetics/136.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Radman M., Wagner R. Mismatch repair in Escherichia coli. Annu Rev Genet. 1986;20:523–538. doi: 10.1146/annurev.ge.20.120186.002515. [DOI] [PubMed] [Google Scholar]
  40. Rebeck G. W., Samson L. Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase. J Bacteriol. 1991 Mar;173(6):2068–2076. doi: 10.1128/jb.173.6.2068-2076.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Reddy M., Gowrishankar J. A genetic strategy to demonstrate the occurrence of spontaneous mutations in nondividing cells within colonies of Escherichia coli. Genetics. 1997 Nov;147(3):991–1001. doi: 10.1093/genetics/147.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reddy M., Gowrishankar J. Identification and characterization of ssb and uup mutants with increased frequency of precise excision of transposon Tn10 derivatives: nucleotide sequence of uup in Escherichia coli. J Bacteriol. 1997 May;179(9):2892–2899. doi: 10.1128/jb.179.9.2892-2899.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rosenberg S. M. Evolving responsively: adaptive mutation. Nat Rev Genet. 2001 Jul;2(7):504–515. doi: 10.1038/35080556. [DOI] [PubMed] [Google Scholar]
  44. Saumaa Signe, Tover Andres, Kasak Lagle, Kivisaar Maia. Different spectra of stationary-phase mutations in early-arising versus late-arising mutants of Pseudomonas putida: involvement of the DNA repair enzyme MutY and the stationary-phase sigma factor RpoS. J Bacteriol. 2002 Dec;184(24):6957–6965. doi: 10.1128/JB.184.24.6957-6965.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  46. Schaaper R. M., Dunn R. L., Glickman B. W. Mechanisms of ultraviolet-induced mutation. Mutational spectra in the Escherichia coli lacI gene for a wild-type and an excision-repair-deficient strain. J Mol Biol. 1987 Nov 20;198(2):187–202. doi: 10.1016/0022-2836(87)90305-6. [DOI] [PubMed] [Google Scholar]
  47. Schaaper R. M., Dunn R. L. Spontaneous mutation in the Escherichia coli lacI gene. Genetics. 1991 Oct;129(2):317–326. doi: 10.1093/genetics/129.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Slechta E. Susan, Harold Jennifer, Andersson Dan I., Roth John R. The effect of genomic position on reversion of a lac frameshift mutation (lacIZ33) during non-lethal selection (adaptive mutation). Mol Microbiol. 2002 May;44(4):1017–1032. doi: 10.1046/j.1365-2958.2002.02934.x. [DOI] [PubMed] [Google Scholar]
  49. Slupska M. M., Baikalov C., Lloyd R., Miller J. H. Mutator tRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: a novel pathway for mutagenesis. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4380–4385. doi: 10.1073/pnas.93.9.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Stahl F. W. Bacterial genetics. A unicorn in the garden. Nature. 1988 Sep 8;335(6186):112–113. doi: 10.1038/335112a0. [DOI] [PubMed] [Google Scholar]
  51. Taddei F., Halliday J. A., Matic I., Radman M. Genetic analysis of mutagenesis in aging Escherichia coli colonies. Mol Gen Genet. 1997 Oct;256(3):277–281. doi: 10.1007/s004380050570. [DOI] [PubMed] [Google Scholar]
  52. Taverna P., Sedgwick B. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli. J Bacteriol. 1996 Sep;178(17):5105–5111. doi: 10.1128/jb.178.17.5105-5111.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vidal A., Abril N., Pueyo C. DNA sequence analysis of spontaneous lacI-d mutations in O6-alkylguanine-DNA alkyltransferase-proficient and -deficient Escherichia coli. Mutagenesis. 1998 Jul;13(4):367–373. doi: 10.1093/mutage/13.4.367. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES