Skip to main content
Genetics logoLink to Genetics
. 2004 Feb;166(2):721–728. doi: 10.1534/genetics.166.2.721

Homology modeling and mutational analysis of Ho endonuclease of yeast.

Anya Bakhrat 1, Melissa S Jurica 1, Barry L Stoddard 1, Dina Raveh 1
PMCID: PMC1470740  PMID: 15020462

Abstract

Ho endonuclease is a LAGLIDADG homing endonuclease that initiates mating-type interconversion in yeast. Ho is encoded by a free-standing gene but shows 50% primary sequence similarity to the intein (protein-intron encoded) PI-SceI. Ho is unique among LAGLIDADG endonucleases in having a 120-residue C-terminal putative zinc finger domain. The crystal structure of PI-SceI revealed a bipartite enzyme with a protein-splicing domain (Hint) and intervening endonuclease domain. We made a homology model for Ho on the basis of the PI-SceI structure and performed mutational analysis of putative critical residues, using a mating-type switch as a bioassay for activity and GFP-fusion proteins to detect nuclear localization. We found that residues of the N-terminal sequence of the Hint domain are important for Ho activity, in particular the DNA recognition region. C-terminal residues of the Hint domain are dispensable for Ho activity; however, the C-terminal putative zinc finger domain is essential. Mutational analysis indicated that residues in Ho that are conserved relative to catalytic, active-site residues in PI-SceI and other related homing endonucleases are essential for Ho activity. Our results indicate that in addition to the conserved catalytic residues, Hint domain residues and the zinc finger domain have evolved a critical role in Ho activity.

Full Text

The Full Text of this article is available as a PDF (239.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belfort M., Roberts R. J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997 Sep 1;25(17):3379–3388. doi: 10.1093/nar/25.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chevalier B. S., Monnat R. J., Jr, Stoddard B. L. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Nat Struct Biol. 2001 Apr;8(4):312–316. doi: 10.1038/86181. [DOI] [PubMed] [Google Scholar]
  3. Chevalier B. S., Stoddard B. L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 2001 Sep 15;29(18):3757–3774. doi: 10.1093/nar/29.18.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chevalier Brett, Turmel Monique, Lemieux Claude, Monnat Raymond J., Jr, Stoddard Barry L. Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J Mol Biol. 2003 May 30;329(2):253–269. doi: 10.1016/s0022-2836(03)00447-9. [DOI] [PubMed] [Google Scholar]
  5. Dean Amy B., Stanger Matt J., Dansereau John T., Van Roey Patrick, Derbyshire Victoria, Belfort Marlene. Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proc Natl Acad Sci U S A. 2002 Jun 19;99(13):8554–8561. doi: 10.1073/pnas.082253699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Derbyshire V., Wood D. W., Wu W., Dansereau J. T., Dalgaard J. Z., Belfort M. Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11466–11471. doi: 10.1073/pnas.94.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duan X., Gimble F. S., Quiocho F. A. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell. 1997 May 16;89(4):555–564. doi: 10.1016/s0092-8674(00)80237-8. [DOI] [PubMed] [Google Scholar]
  8. Fitzsimons Hall Marilena, Noren Christopher J., Perler Francine B., Schildkraut Ira. Creation of an artificial bifunctional intein by grafting a homing endonuclease into a mini-intein. J Mol Biol. 2002 Oct 18;323(2):173–179. doi: 10.1016/s0022-2836(02)00912-9. [DOI] [PubMed] [Google Scholar]
  9. Gimble F. S., Duan X., Hu D., Quiocho F. A. Identification of Lys-403 in the PI-SceI homing endonuclease as part of a symmetric catalytic center. J Biol Chem. 1998 Nov 13;273(46):30524–30529. doi: 10.1074/jbc.273.46.30524. [DOI] [PubMed] [Google Scholar]
  10. Gimble F. S. Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol Lett. 2000 Apr 15;185(2):99–107. doi: 10.1111/j.1574-6968.2000.tb09046.x. [DOI] [PubMed] [Google Scholar]
  11. Gimble F. S., Wang J. Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing. J Mol Biol. 1996 Oct 25;263(2):163–180. doi: 10.1006/jmbi.1996.0567. [DOI] [PubMed] [Google Scholar]
  12. Grindl W., Wende W., Pingoud V., Pingoud A. The protein splicing domain of the homing endonuclease PI-sceI is responsible for specific DNA binding. Nucleic Acids Res. 1998 Apr 15;26(8):1857–1862. doi: 10.1093/nar/26.8.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hall T. M., Porter J. A., Young K. E., Koonin E. V., Beachy P. A., Leahy D. J. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell. 1997 Oct 3;91(1):85–97. doi: 10.1016/s0092-8674(01)80011-8. [DOI] [PubMed] [Google Scholar]
  14. He Z., Crist M., Yen H., Duan X., Quiocho F. A., Gimble F. S. Amino acid residues in both the protein splicing and endonuclease domains of the PI-SceI intein mediate DNA binding. J Biol Chem. 1998 Feb 20;273(8):4607–4615. doi: 10.1074/jbc.273.8.4607. [DOI] [PubMed] [Google Scholar]
  15. Heath P. J., Stephens K. M., Monnat R. J., Jr, Stoddard B. L. The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol. 1997 Jun;4(6):468–476. doi: 10.1038/nsb0697-468. [DOI] [PubMed] [Google Scholar]
  16. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  17. Hu D., Crist M., Duan X., Gimble F. S. Mapping of a DNA binding region of the PI-sceI homing endonuclease by affinity cleavage and alanine-scanning mutagenesis. Biochemistry. 1999 Sep 28;38(39):12621–12628. doi: 10.1021/bi991192h. [DOI] [PubMed] [Google Scholar]
  18. Hu D., Crist M., Duan X., Quiocho F. A., Gimble F. S. Probing the structure of the PI-SceI-DNA complex by affinity cleavage and affinity photocross-linking. J Biol Chem. 2000 Jan 28;275(4):2705–2712. doi: 10.1074/jbc.275.4.2705. [DOI] [PubMed] [Google Scholar]
  19. Ichiyanagi K., Ishino Y., Ariyoshi M., Komori K., Morikawa K. Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI. J Mol Biol. 2000 Jul 21;300(4):889–901. doi: 10.1006/jmbi.2000.3873. [DOI] [PubMed] [Google Scholar]
  20. Jin Y., Binkowski G., Simon L. D., Norris D. Ho endonuclease cleaves MAT DNA in vitro by an inefficient stoichiometric reaction mechanism. J Biol Chem. 1997 Mar 14;272(11):7352–7359. doi: 10.1074/jbc.272.11.7352. [DOI] [PubMed] [Google Scholar]
  21. Jurica M. S., Monnat R. J., Jr, Stoddard B. L. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell. 1998 Oct;2(4):469–476. doi: 10.1016/s1097-2765(00)80146-x. [DOI] [PubMed] [Google Scholar]
  22. Jurica M. S., Stoddard B. L. Homing endonucleases: structure, function and evolution. Cell Mol Life Sci. 1999 Aug 15;55(10):1304–1326. doi: 10.1007/s000180050372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaplun L., Ivantsiv Y., Kornitzer D., Raveh D. Functions of the DNA damage response pathway target Ho endonuclease of yeast for degradation via the ubiquitin-26S proteasome system. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10077–10082. doi: 10.1073/pnas.97.18.10077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaplun Ludmila, Ivantsiv Yelena, Bakhrat Anna, Raveh Dina. DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J Biol Chem. 2003 Sep 23;278(49):48727–48734. doi: 10.1074/jbc.M308671200. [DOI] [PubMed] [Google Scholar]
  25. Klug A., Schwabe J. W. Protein motifs 5. Zinc fingers. FASEB J. 1995 May;9(8):597–604. [PubMed] [Google Scholar]
  26. Lucas P., Otis C., Mercier J. P., Turmel M., Lemieux C. Rapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases. Nucleic Acids Res. 2001 Feb 15;29(4):960–969. doi: 10.1093/nar/29.4.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lykke-Andersen J., Garrett R. A., Kjems J. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res. 1996 Oct 15;24(20):3982–3989. doi: 10.1093/nar/24.20.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moure Carmen M., Gimble Frederick S., Quiocho Florante A. Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence. Nat Struct Biol. 2002 Oct;9(10):764–770. doi: 10.1038/nsb840. [DOI] [PubMed] [Google Scholar]
  29. Nagai Yuri, Nogami Satoru, Kumagai-Sano Fumi, Ohya Yoshikazu. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region. Mol Cell Biol. 2003 Mar;23(5):1726–1736. doi: 10.1128/MCB.23.5.1726-1736.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nahon E., Raveh D. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers. Nucleic Acids Res. 1998 Mar 1;26(5):1233–1239. doi: 10.1093/nar/26.5.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neff N. F. Protein splicing: selfish genes invade cellular proteins. Curr Opin Cell Biol. 1993 Dec;5(6):971–976. doi: 10.1016/0955-0674(93)90079-6. [DOI] [PubMed] [Google Scholar]
  32. Perler F. B., Xu M. Q., Paulus H. Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. 1997 Oct;1(3):292–299. doi: 10.1016/s1367-5931(97)80065-8. [DOI] [PubMed] [Google Scholar]
  33. Pietrokovski S. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 1994 Dec;3(12):2340–2350. doi: 10.1002/pro.5560031218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Russell D. W., Jensen R., Zoller M. J., Burke J., Errede B., Smith M., Herskowitz I. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol Cell Biol. 1986 Dec;6(12):4281–4294. doi: 10.1128/mcb.6.12.4281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwabe J. W., Klug A. Zinc mining for protein domains. Nat Struct Biol. 1994 Jun;1(6):345–349. doi: 10.1038/nsb0694-345. [DOI] [PubMed] [Google Scholar]
  36. Seligman L. M., Stephens K. M., Savage J. H., Monnat R. J., Jr Genetic analysis of the Chlamydomonas reinhardtii I-CreI mobile intron homing system in Escherichia coli. Genetics. 1997 Dec;147(4):1653–1664. doi: 10.1093/genetics/147.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Silva G. H., Dalgaard J. Z., Belfort M., Van Roey P. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol. 1999 Mar 5;286(4):1123–1136. doi: 10.1006/jmbi.1998.2519. [DOI] [PubMed] [Google Scholar]
  38. Simon Peter, Houston Peter, Broach James. Directional bias during mating type switching in Saccharomyces is independent of chromosomal architecture. EMBO J. 2002 May 1;21(9):2282–2291. doi: 10.1093/emboj/21.9.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strathern J. N., Klar A. J., Hicks J. B., Abraham J. A., Ivy J. M., Nasmyth K. A., McGill C. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell. 1982 Nov;31(1):183–192. doi: 10.1016/0092-8674(82)90418-4. [DOI] [PubMed] [Google Scholar]
  40. Suzuki R., Shibata T., Niinobu T., Tsukahara Y., Fukushima Y., Fujita J., Kitada M., Shimano T., Takami M., Hanada M. [Three long surviving patients with gastric cancer metastasizing to the liver under interdisciplinary therapy]. Gan To Kagaku Ryoho. 2000 Oct;27(12):1997–2000. [PubMed] [Google Scholar]
  41. Tamai Y., Tanaka K., Umemoto N., Tomizuka K., Kaneko Y. Diversity of the HO gene encoding an endonuclease for mating-type conversion in the bottom fermenting yeast Saccharomyces pastorianus. Yeast. 2000 Oct;16(14):1335–1343. doi: 10.1002/1097-0061(200010)16:14<1335::AID-YEA623>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  42. Turmel M., Otis C., Côté V., Lemieux C. Evolutionarily conserved and functionally important residues in the I-CeuI homing endonuclease. Nucleic Acids Res. 1997 Jul 1;25(13):2610–2619. doi: 10.1093/nar/25.13.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weiffenbach B., Rogers D. T., Haber J. E., Zoller M., Russell D. W., Smith M. Deletions and single base pair changes in the yeast mating type locus that prevent homothallic mating type conversions. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3401–3405. doi: 10.1073/pnas.80.11.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES