Skip to main content
Genetics logoLink to Genetics
. 2004 Feb;166(2):741–751. doi: 10.1534/genetics.166.2.741

Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining.

Xin Yu 1, Abram Gabriel 1
PMCID: PMC1470746  PMID: 15020464

Abstract

Reciprocal translocations are common in cancer cells, but their creation is poorly understood. We have developed an assay system in Saccharomyces cerevisiae to study reciprocal translocation formation in the absence of homology. We induce two specific double-strand breaks (DSBs) simultaneously on separate chromosomes with HO endonuclease and analyze the subsequent chromosomal rearrangements among surviving cells. Under these conditions, reciprocal translocations via nonhomologous end joining (NHEJ) occur at frequencies of approximately 2-7 x 10(-5)/cell exposed to the DSBs. Yku80p is a component of the cell's NHEJ machinery. In its absence, reciprocal translocations still occur, but the junctions are associated with deletions and extended overlapping sequences. After induction of a single DSB, translocations and inversions are recovered in wild-type and rad52 strains. In these rearrangements, a nonrandom assortment of sites have fused to the DSB, and their junctions show typical signs of NHEJ. The sites tend to be between open reading frames or within Ty1 LTRs. In some cases the translocation partner is formed by a break at a cryptic HO recognition site. Our results demonstrate that NHEJ-mediated reciprocal translocations can form in S. cerevisiae as a consequence of DSB repair.

Full Text

The Full Text of this article is available as a PDF (307.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr F. G. Translocations, cancer and the puzzle of specificity. Nat Genet. 1998 Jun;19(2):121–124. doi: 10.1038/475. [DOI] [PubMed] [Google Scholar]
  2. Betti C. J., Villalobos M. J., Diaz M. O., Vaughan A. T. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system. Cancer Res. 2001 Jun 1;61(11):4550–4555. [PubMed] [Google Scholar]
  3. Betti Christopher J., Villalobos Michael J., Diaz Manuel O., Vaughan Andrew T. M. Apoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of division. Cancer Res. 2003 Mar 15;63(6):1377–1381. [PubMed] [Google Scholar]
  4. Bodrug S. E., Holden J. J., Ray P. N., Worton R. G. Molecular analysis of X-autosome translocations in females with Duchenne muscular dystrophy. EMBO J. 1991 Dec;10(12):3931–3939. doi: 10.1002/j.1460-2075.1991.tb04963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boehm T., Mengle-Gaw L., Kees U. R., Spurr N., Lavenir I., Forster A., Rabbitts T. H. Alternating purine-pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours. EMBO J. 1989 Sep;8(9):2621–2631. doi: 10.1002/j.1460-2075.1989.tb08402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bosco G., Haber J. E. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics. 1998 Nov;150(3):1037–1047. doi: 10.1093/genetics/150.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casaregola S., Nguyen H. V., Lepingle A., Brignon P., Gendre F., Gaillardin C. A family of laboratory strains of Saccharomyces cerevisiae carry rearrangements involving chromosomes I and III. Yeast. 1998 Apr 30;14(6):551–564. doi: 10.1002/(SICI)1097-0061(19980430)14:6<551::AID-YEA260>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  8. Chen C., Kolodner R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999 Sep;23(1):81–85. doi: 10.1038/12687. [DOI] [PubMed] [Google Scholar]
  9. Domer P. H., Head D. R., Renganathan N., Raimondi S. C., Yang E., Atlas M. Molecular analysis of 13 cases of MLL/11q23 secondary acute leukemia and identification of topoisomerase II consensus-binding sequences near the chromosomal breakpoint of a secondary leukemia with the t(4;11). Leukemia. 1995 Aug;9(8):1305–1312. [PubMed] [Google Scholar]
  10. Dunham Maitreya J., Badrane Hassan, Ferea Tracy, Adams Julian, Brown Patrick O., Rosenzweig Frank, Botstein David. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2002 Nov 21;99(25):16144–16149. doi: 10.1073/pnas.242624799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fasullo M. T., Davis R. W. Direction of chromosome rearrangements in Saccharomyces cerevisiae by use of his3 recombinational substrates. Mol Cell Biol. 1988 Oct;8(10):4370–4380. doi: 10.1128/mcb.8.10.4370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fasullo M., Bennett T., Dave P. Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates. Mutat Res. 1999 Jan 26;433(1):33–44. doi: 10.1016/s0921-8777(98)00059-7. [DOI] [PubMed] [Google Scholar]
  13. Fischer G., James S. A., Roberts I. N., Oliver S. G., Louis E. J. Chromosomal evolution in Saccharomyces. Nature. 2000 May 25;405(6785):451–454. doi: 10.1038/35013058. [DOI] [PubMed] [Google Scholar]
  14. Galgoczy D. J., Toczyski D. P. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol Cell Biol. 2001 Mar;21(5):1710–1718. doi: 10.1128/MCB.21.5.1710-1718.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerton J. L., DeRisi J., Shroff R., Lichten M., Brown P. O., Petes T. D. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11383–11390. doi: 10.1073/pnas.97.21.11383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haber J. E., Leung W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13949–13954. doi: 10.1073/pnas.93.24.13949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hiom K., Melek M., Gellert M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell. 1998 Aug 21;94(4):463–470. doi: 10.1016/s0092-8674(00)81587-1. [DOI] [PubMed] [Google Scholar]
  18. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  19. Jinks-Robertson S., Petes T. D. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics. 1986 Nov;114(3):731–752. doi: 10.1093/genetics/114.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kramer K. M., Brock J. A., Bloom K., Moore J. K., Haber J. E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol. 1994 Feb;14(2):1293–1301. doi: 10.1128/mcb.14.2.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee S. E., Moore J. K., Holmes A., Umezu K., Kolodner R. D., Haber J. E. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998 Aug 7;94(3):399–409. doi: 10.1016/s0092-8674(00)81482-8. [DOI] [PubMed] [Google Scholar]
  22. Lisby Michael, Antúnez de Mayolo Adriana, Mortensen Uffe H., Rothstein Rodney. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle. 2003 Sep-Oct;2(5):479–483. [PubMed] [Google Scholar]
  23. Lisby Michael, Mortensen Uffe H., Rothstein Rodney. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003 Jun;5(6):572–577. doi: 10.1038/ncb997. [DOI] [PubMed] [Google Scholar]
  24. Moore J. K., Haber J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2164–2173. doi: 10.1128/mcb.16.5.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myung K., Chen C., Kolodner R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature. 2001 Jun 28;411(6841):1073–1076. doi: 10.1038/35082608. [DOI] [PubMed] [Google Scholar]
  26. Nickoloff J. A., Singer J. D., Heffron F. In vivo analysis of the Saccharomyces cerevisiae HO nuclease recognition site by site-directed mutagenesis. Mol Cell Biol. 1990 Mar;10(3):1174–1179. doi: 10.1128/mcb.10.3.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Potier S., Winsor B., Lacroute F. Genetic selection for reciprocal translocation at chosen chromosomal sites in Saccharomyces cerevisiae. Mol Cell Biol. 1982 Sep;2(9):1025–1032. doi: 10.1128/mcb.2.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rachidi N., Barre P., Blondin B. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet. 1999 Jun;261(4-5):841–850. doi: 10.1007/s004380050028. [DOI] [PubMed] [Google Scholar]
  31. Raghuraman M. K., Winzeler E. A., Collingwood D., Hunt S., Wodicka L., Conway A., Lockhart D. J., Davis R. W., Brewer B. J., Fangman W. L. Replication dynamics of the yeast genome. Science. 2001 Oct 5;294(5540):115–121. doi: 10.1126/science.294.5540.115. [DOI] [PubMed] [Google Scholar]
  32. Rowley J. D. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. 2001 Dec;1(3):245–250. doi: 10.1038/35106108. [DOI] [PubMed] [Google Scholar]
  33. Ryu S. L., Murooka Y., Kaneko Y. Reciprocal translocation at duplicated RPL2 loci might cause speciation of Saccharomyces bayanus and Saccharomyces cerevisiae. Curr Genet. 1998 May;33(5):345–351. doi: 10.1007/s002940050346. [DOI] [PubMed] [Google Scholar]
  34. Sauer B. Identification of cryptic lox sites in the yeast genome by selection for Cre-mediated chromosome translocations that confer multiple drug resistance. J Mol Biol. 1992 Feb 20;223(4):911–928. doi: 10.1016/0022-2836(92)90252-f. [DOI] [PubMed] [Google Scholar]
  35. Schiestl R. H., Petes T. D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7585–7589. doi: 10.1073/pnas.88.17.7585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Strout M. P., Marcucci G., Bloomfield C. D., Caligiuri M. A. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2390–2395. doi: 10.1073/pnas.95.5.2390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sweetser D. B., Hough H., Whelden J. F., Arbuckle M., Nickoloff J. A. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol Cell Biol. 1994 Jun;14(6):3863–3875. doi: 10.1128/mcb.14.6.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tennyson Rachel B., Ebran Nathalie, Herrera Anissa E., Lindsley Janet E. A novel selection system for chromosome translocations in Saccharomyces cerevisiae. Genetics. 2002 Apr;160(4):1363–1373. doi: 10.1093/genetics/160.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vaze Moreshwar B., Pellicioli Achille, Lee Sang Eun, Ira Grzegorz, Liberi Giordano, Arbel-Eden Ayelet, Foiani Marco, Haber James E. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell. 2002 Aug;10(2):373–385. doi: 10.1016/s1097-2765(02)00593-2. [DOI] [PubMed] [Google Scholar]
  40. Wiemels J. L., Greaves M. Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia. Cancer Res. 1999 Aug 15;59(16):4075–4082. [PubMed] [Google Scholar]
  41. Wilson T. E., Lieber M. R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem. 1999 Aug 13;274(33):23599–23609. doi: 10.1074/jbc.274.33.23599. [DOI] [PubMed] [Google Scholar]
  42. Yu X., Gabriel A. Patching broken chromosomes with extranuclear cellular DNA. Mol Cell. 1999 Nov;4(5):873–881. doi: 10.1016/s1097-2765(00)80397-4. [DOI] [PubMed] [Google Scholar]
  43. Yu Xin, Gabriel Abram. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics. 2003 Mar;163(3):843–856. doi: 10.1093/genetics/163.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES