Skip to main content
Genetics logoLink to Genetics
. 2004 Feb;166(2):999–1009. doi: 10.1534/genetics.166.2.999

Chromosome instabilities and programmed cell death in tapetal cells of maize with B chromosomes and effects on pollen viability.

Mónica González-Sánchez 1, Marcela Rosato 1, Mauricio Chiavarino 1, María J Puertas 1
PMCID: PMC1470749  PMID: 15020483

Abstract

B chromosomes (B's), knobbed chromosomes, and chromosome 6 (NOR) of maize undergo nondisjunction and micronucleus formation in binucleate tapetal cells. These chromosome instabilities are regular events in the program of tapetal cell death, but the B's strongly increase A chromosome instability. We studied 1B and 0B plants belonging to selected lines for high or low B transmission rate and their F1 hybrids. These lines are characterized by meiotic conservation or loss of B chromosomes, respectively. The female B transmission (fBtl) allele(s) for low B transmission is dominant, inducing micronucleus formation and B nondisjunction. We hypothesize that the fBtl allele(s) induces knob instability. This instability would be sufficient to produce B loss in both meiocytes and binucleate tapetal cells. B instability could, in turn, produce instabilities in all chromosomes of maize complement. To establish whether the chromosomal instabilities are related to the tapetal programmed cell death (PCD) process, we applied the TUNEL technique. PCD, estimated as the frequency of binucleate tapetal cells with TUNEL label, was significantly correlated with the formation of micronuclei and the frequency of pollen abortion. It can be concluded that the observed chromosome instabilities are important to the PCD process and to the development of microspores to form viable pollen grains.

Full Text

The Full Text of this article is available as a PDF (225.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfenito M. R., Birchler J. A. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993 Oct;135(2):589–597. doi: 10.1093/genetics/135.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aragón-Alcaide L., Reader S., Beven A., Shaw P., Miller T., Moore G. Association of homologous chromosomes during floral development. Curr Biol. 1997 Nov 1;7(11):905–908. doi: 10.1016/s0960-9822(06)00383-6. [DOI] [PubMed] [Google Scholar]
  3. Beers E. P., McDowell J. M. Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Curr Opin Plant Biol. 2001 Dec;4(6):561–567. doi: 10.1016/s1369-5266(00)00216-8. [DOI] [PubMed] [Google Scholar]
  4. Canales Claudia, Bhatt Anuj M., Scott Rod, Dickinson Hugh. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol. 2002 Oct 15;12(20):1718–1727. doi: 10.1016/s0960-9822(02)01151-x. [DOI] [PubMed] [Google Scholar]
  5. Chiavarino A. M., Rosato M., Manzanero S., Jiménez G., González-Sánchez M., Puertas M. J. Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize. Genetics. 2000 Jun;155(2):889–897. doi: 10.1093/genetics/155.2.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Jong A. J., Hoeberichts F. A., Yakimova E. T., Maximova E., Woltering E. J. Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta. 2000 Oct;211(5):656–662. doi: 10.1007/s004250000341. [DOI] [PubMed] [Google Scholar]
  7. Gerlach W. L., Bedbrook J. R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979 Dec 11;7(7):1869–1885. doi: 10.1093/nar/7.7.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giuliani Concetta, Consonni Gabriella, Gavazzi Giuseppe, Colombo Monica, Dolfini Silvana. Programmed cell death during embryogenesis in maize. Ann Bot. 2002 Aug;90(2):287–292. doi: 10.1093/aob/mcf173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. González-Sánchez M., González-González E., Molina F., Chiavarino A. M., Rosato M., Puertas M. J. One gene determines maize B chromosome accumulation by preferential fertilisation; another gene(s) determines their meiotic loss. Heredity (Edinb) 2003 Feb;90(2):122–129. doi: 10.1038/sj.hdy.6800185. [DOI] [PubMed] [Google Scholar]
  10. Jones A. M., Coimbra S., Fath A., Sottomayor M., Thomas H. Programmed cell death assays for plants. Methods Cell Biol. 2001;66:437–451. doi: 10.1016/s0091-679x(01)66020-5. [DOI] [PubMed] [Google Scholar]
  11. Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 2000 May;5(5):225–230. doi: 10.1016/s1360-1385(00)01605-8. [DOI] [PubMed] [Google Scholar]
  12. Kapoor Sanjay, Kobayashi Akira, Takatsuji Hiroshi. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell. 2002 Oct;14(10):2353–2367. doi: 10.1105/tpc.003061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuriyama Hideo, Fukuda Hiroo. Developmental programmed cell death in plants. Curr Opin Plant Biol. 2002 Dec;5(6):568–573. doi: 10.1016/s1369-5266(02)00305-9. [DOI] [PubMed] [Google Scholar]
  14. Lai Zhao, Ma Wenshi, Han Bin, Liang Lizhi, Zhang Yansheng, Hong Guofan, Xue Yongbiao. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol. 2002 Sep;50(1):29–42. doi: 10.1023/a:1016050018779. [DOI] [PubMed] [Google Scholar]
  15. Lincoln James E., Richael Craig, Overduin Bert, Smith Kathy, Bostock Richard, Gilchrist David G. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci U S A. 2002 Oct 25;99(23):15217–15221. doi: 10.1073/pnas.232579799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray Fiona, Kalla Roger, Jacobsen John, Gubler Frank. A role for HvGAMYB in anther development. Plant J. 2003 Feb;33(3):481–491. doi: 10.1046/j.1365-313x.2003.01641.x. [DOI] [PubMed] [Google Scholar]
  17. Peacock W. J., Dennis E. S., Rhoades M. M., Pryor A. J. Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4490–4494. doi: 10.1073/pnas.78.7.4490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rhoades M. M., Dempsey E., Ghidoni A. Chromosome elimination in maize induced by supernumerary B chromosomes. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1626–1632. doi: 10.1073/pnas.57.6.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rhoades M. M., Dempsey E. On the mechanism of chromatin loss induced by the B chromosome of maize. Genetics. 1972 May;71(1):73–96. doi: 10.1093/genetics/71.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Solomon M., Belenghi B., Delledonne M., Menachem E., Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell. 1999 Mar;11(3):431–444. doi: 10.1105/tpc.11.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Surh C. D., Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature. 1994 Nov 3;372(6501):100–103. doi: 10.1038/372100a0. [DOI] [PubMed] [Google Scholar]
  22. Tilly J. L., Hsueh A. J. Microscale autoradiographic method for the qualitative and quantitative analysis of apoptotic DNA fragmentation. J Cell Physiol. 1993 Mar;154(3):519–526. doi: 10.1002/jcp.1041540310. [DOI] [PubMed] [Google Scholar]
  23. Wang Aiming, Xia Qun, Xie Wenshuang, Dumonceaux Tim, Zou Jitao, Datla Raju, Selvaraj Gopalan. Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny. Plant J. 2002 Jun;30(6):613–623. doi: 10.1046/j.1365-313x.2002.01313.x. [DOI] [PubMed] [Google Scholar]
  24. Wang M., Hoekstra S., van Bergen S., Lamers G. E., Oppedijk B. J., van der Heijden M. W., de Priester W., Schilperoort R. A. Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol. 1999 Feb;39(3):489–501. doi: 10.1023/a:1006198431596. [DOI] [PubMed] [Google Scholar]
  25. Wilson Z. A., Morroll S. M., Dawson J., Swarup R., Tighe P. J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 2001 Oct;28(1):27–39. doi: 10.1046/j.1365-313x.2001.01125.x. [DOI] [PubMed] [Google Scholar]
  26. Wu H. M., Cheun A. Y. Programmed cell death in plant reproduction. Plant Mol Biol. 2000 Oct;44(3):267–281. doi: 10.1023/a:1026536324081. [DOI] [PubMed] [Google Scholar]
  27. Wu Sherry S. H., Suen Der Fen, Chang Han Chang, Huang Anthony H. C. Maize tapetum xylanase is synthesized as a precursor, processed and activated by a serine protease, and deposited on the pollen. J Biol Chem. 2002 Oct 3;277(50):49055–49064. doi: 10.1074/jbc.M208804200. [DOI] [PubMed] [Google Scholar]
  28. Yang W. C., Ye D., Xu J., Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 1999 Aug 15;13(16):2108–2117. doi: 10.1101/gad.13.16.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES