Abstract
In this report, we propose the use of structural equations as a tool for identifying and modeling genetic networks and genetic algorithms for searching the most likely genetic networks that best fit the data. After genetic networks are identified, it is fundamental to identify those networks influencing cell phenotypes. To accomplish this task we extend the concept of differential expression of the genes, widely used in gene expression data analysis, to genetic networks. We propose a definition for the differential expression of a genetic network and use the generalized T2 statistic to measure the ability of genetic networks to distinguish different phenotypes. However, describing the differential expression of genetic networks is not enough for understanding biological systems because differences in the expression of genetic networks do not directly reflect regulatory strength between gene activities. Therefore, in this report we also introduce the concept of differentially regulated genetic networks, which has the potential to assess changes of gene regulation in response to perturbation in the environment and may provide new insights into the mechanism of diseases and biological processes. We propose five novel statistics to measure the differences in regulation of genetic networks. To illustrate the concepts and methods for reconstruction of genetic networks and identification of association of genetic networks with function, we applied the proposed models and algorithms to three data sets.
Full Text
The Full Text of this article is available as a PDF (283.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akutsu T., Miyano S., Kuhara S. Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J Comput Biol. 2000;7(3-4):331–343. doi: 10.1089/106652700750050817. [DOI] [PubMed] [Google Scholar]
- Arluison V., Batelier G., Riès-Kautt M., Grosjean H. RNA:pseudouridine synthetase Pus1 from Saccharomyces cerevisiae: oligomerization property and stoichiometry of the complex with yeast tRNA(Phe). Biochimie. 1999 Jul;81(7):751–756. doi: 10.1016/s0300-9084(99)80133-3. [DOI] [PubMed] [Google Scholar]
- Battogtokh D., Asch D. K., Case M. E., Arnold J., Schuttler H-B. An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa. Proc Natl Acad Sci U S A. 2002 Dec 11;99(26):16904–16909. doi: 10.1073/pnas.262658899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornaes C., Petersen J. G., Holmberg S. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases. Genetics. 1992 Jul;131(3):531–539. doi: 10.1093/genetics/131.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowser David N., Wagner David A., Czajkowski Cynthia, Cromer Brett A., Parker Michael W., Wallace Robyn H., Harkin Louise A., Mulley John C., Marini Carla, Berkovic Samuel F. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [gamma 2(R43Q)] found in human epilepsy. Proc Natl Acad Sci U S A. 2002 Nov 1;99(23):15170–15175. doi: 10.1073/pnas.212320199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown P. O., Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet. 1999 Jan;21(1 Suppl):33–37. doi: 10.1038/4462. [DOI] [PubMed] [Google Scholar]
- Chen T., He H. L., Church G. M. Modeling gene expression with differential equations. Pac Symp Biocomput. 1999:29–40. [PubMed] [Google Scholar]
- Chen Zhuang, Gordon John R., Zhang Xueshu, Xiang Jim. Analysis of the gene expression profiles of immature versus mature bone marrow-derived dendritic cells using DNA arrays. Biochem Biophys Res Commun. 2002 Jan 11;290(1):66–72. doi: 10.1006/bbrc.2001.6147. [DOI] [PubMed] [Google Scholar]
- Cho R. J., Campbell M. J., Winzeler E. A., Steinmetz L., Conway A., Wodicka L., Wolfsberg T. G., Gabrielian A. E., Landsman D., Lockhart D. J. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. 1998 Jul;2(1):65–73. doi: 10.1016/s1097-2765(00)80114-8. [DOI] [PubMed] [Google Scholar]
- D'haeseleer P., Wen X., Fuhrman S., Somogyi R. Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput. 1999:41–52. doi: 10.1142/9789814447300_0005. [DOI] [PubMed] [Google Scholar]
- Dotan Z. A., Dotan A., Litmanovitch T., Ravia Y., Oniashvili N., Leibovitch I., Ramon J., Avivi L. Modification in the inherent mode of allelic replication in lymphocytes of patients suffering from renal cell carcinoma: a novel genetic alteration associated with malignancy. Genes Chromosomes Cancer. 2000 Mar;27(3):270–277. [PubMed] [Google Scholar]
- Figeys D., Pinto D. Proteomics on a chip: promising developments. Electrophoresis. 2001 Jan;22(2):208–216. doi: 10.1002/1522-2683(200101)22:2<208::AID-ELPS208>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Fiucci Giusy, Ravid Dana, Reich Reuven, Liscovitch Mordechai. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene. 2002 Apr 4;21(15):2365–2375. doi: 10.1038/sj.onc.1205300. [DOI] [PubMed] [Google Scholar]
- Friedman N., Linial M., Nachman I., Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7(3-4):601–620. doi: 10.1089/106652700750050961. [DOI] [PubMed] [Google Scholar]
- Gardner Timothy S., di Bernardo Diego, Lorenz David, Collins James J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science. 2003 Jul 4;301(5629):102–105. doi: 10.1126/science.1081900. [DOI] [PubMed] [Google Scholar]
- Garib V., Niggemann B., Zänker K. S., Brandt L., Kubens B. S. Influence of non-volatile anesthetics on the migration behavior of the human breast cancer cell line MDA-MB-468. Acta Anaesthesiol Scand. 2002 Aug;46(7):836–844. doi: 10.1034/j.1399-6576.2002.460714.x. [DOI] [PubMed] [Google Scholar]
- Hartemink A. J., Gifford D. K., Jaakkola T. S., Young R. A. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput. 2001:422–433. doi: 10.1142/9789814447362_0042. [DOI] [PubMed] [Google Scholar]
- Hasty Jeff, McMillen David, Collins J. J. Engineered gene circuits. Nature. 2002 Nov 14;420(6912):224–230. doi: 10.1038/nature01257. [DOI] [PubMed] [Google Scholar]
- Houseman Benjamin T., Huh Joon H., Kron Stephen J., Mrksich Milan. Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol. 2002 Mar;20(3):270–274. doi: 10.1038/nbt0302-270. [DOI] [PubMed] [Google Scholar]
- Hughes T. R., Shoemaker D. D. DNA microarrays for expression profiling. Curr Opin Chem Biol. 2001 Feb;5(1):21–25. doi: 10.1016/s1367-5931(00)00163-0. [DOI] [PubMed] [Google Scholar]
- Ideker T., Thorsson V., Ranish J. A., Christmas R., Buhler J., Eng J. K., Bumgarner R., Goodlett D. R., Aebersold R., Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001 May 4;292(5518):929–934. doi: 10.1126/science.292.5518.929. [DOI] [PubMed] [Google Scholar]
- Imoto Seiya, Goto Takao, Miyano Satoru. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac Symp Biocomput. 2002:175–186. [PubMed] [Google Scholar]
- Iwama Hisakazu, Gojobori Takashi. Identification of neurotransmitter receptor genes under significantly relaxed selective constraint by orthologous gene comparisons between humans and rodents. Mol Biol Evol. 2002 Nov;19(11):1891–1901. doi: 10.1093/oxfordjournals.molbev.a004013. [DOI] [PubMed] [Google Scholar]
- Joseph Jan, Niggemann Bernd, Zaenker Kurt S., Entschladen Frank. The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 2002 Nov 15;62(22):6467–6469. [PubMed] [Google Scholar]
- Lee Hyangkyu, Park David S., Razani Babak, Russell Robert G., Pestell Richard G., Lisanti Michael P. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol. 2002 Oct;161(4):1357–1369. doi: 10.1016/S0002-9440(10)64412-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lennon K., Pretel R., Kesselheim J., te Heesen S., Kukuruzinska M. A. Proliferation-dependent differential regulation of the dolichol pathway genes in Saccharomyces cerevisiae. Glycobiology. 1995 Sep;5(6):633–642. doi: 10.1093/glycob/5.6.633. [DOI] [PubMed] [Google Scholar]
- Liang S., Fuhrman S., Somogyi R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput. 1998:18–29. [PubMed] [Google Scholar]
- Lockhart D. J., Winzeler E. A. Genomics, gene expression and DNA arrays. Nature. 2000 Jun 15;405(6788):827–836. doi: 10.1038/35015701. [DOI] [PubMed] [Google Scholar]
- Mann M. Quantitative proteomics? Nat Biotechnol. 1999 Oct;17(10):954–955. doi: 10.1038/13646. [DOI] [PubMed] [Google Scholar]
- McInerny C. J., Partridge J. F., Mikesell G. E., Creemer D. P., Breeden L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 1997 May 15;11(10):1277–1288. doi: 10.1101/gad.11.10.1277. [DOI] [PubMed] [Google Scholar]
- McLuckey S. A., Wells J. M. Mass analysis at the advent of the 21st century. Chem Rev. 2001 Feb;101(2):571–606. doi: 10.1021/cr990087a. [DOI] [PubMed] [Google Scholar]
- O'Connor J. P., Peebles C. L. PTA1, an essential gene of Saccharomyces cerevisiae affecting pre-tRNA processing. Mol Cell Biol. 1992 Sep;12(9):3843–3856. doi: 10.1128/mcb.12.9.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papadimitriou G. N., Dikeos D. G., Karadima G., Avramopoulos D., Daskalopoulou E. G., Stefanis C. N. GABA-A receptor beta3 and alpha5 subunit gene cluster on chromosome 15q11-q13 and bipolar disorder: a genetic association study. Am J Med Genet. 2001 May 8;105(4):317–320. doi: 10.1002/ajmg.1354. [DOI] [PubMed] [Google Scholar]
- Peeper Daniel S., Shvarts Avi, Brummelkamp Thijn, Douma Sirith, Koh Eugene Y., Daley George Q., Bernards René. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell Biol. 2002 Feb;4(2):148–153. doi: 10.1038/ncb742. [DOI] [PubMed] [Google Scholar]
- Ronen Michal, Rosenberg Revital, Shraiman Boris I., Alon Uri. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci U S A. 2002 Jul 26;99(16):10555–10560. doi: 10.1073/pnas.152046799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz G., Kaminski W. E. ABCA2: a candidate regulator of neural transmembrane lipid transport. Cell Mol Life Sci. 2002 Aug;59(8):1285–1295. doi: 10.1007/s00018-002-8508-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shmulevich Ilya, Dougherty Edward R., Zhang Wei. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics. 2002 Oct;18(10):1319–1331. doi: 10.1093/bioinformatics/18.10.1319. [DOI] [PubMed] [Google Scholar]
- Singh Dinesh, Febbo Phillip G., Ross Kenneth, Jackson Donald G., Manola Judith, Ladd Christine, Tamayo Pablo, Renshaw Andrew A., D'Amico Anthony V., Richie Jerome P. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002 Mar;1(2):203–209. doi: 10.1016/s1535-6108(02)00030-2. [DOI] [PubMed] [Google Scholar]
- Volanakis J. E., Narayana S. V. Complement factor D, a novel serine protease. Protein Sci. 1996 Apr;5(4):553–564. doi: 10.1002/pro.5560050401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahde M., Hertz J. Coarse-grained reverse engineering of genetic regulatory networks. Biosystems. 2000 Feb;55(1-3):129–136. doi: 10.1016/s0303-2647(99)00090-8. [DOI] [PubMed] [Google Scholar]
- Wiechen K., Diatchenko L., Agoulnik A., Scharff K. M., Schober H., Arlt K., Zhumabayeva B., Siebert P. D., Dietel M., Schäfer R. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol. 2001 Nov;159(5):1635–1643. doi: 10.1016/S0002-9440(10)63010-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong E. T., Jenne D. E., Zimmer M., Porter S. D., Gilks C. B. Changes in chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation. Blood. 1999 Dec 1;94(11):3730–3736. [PubMed] [Google Scholar]
- Woolf P. J., Wang Y. A fuzzy logic approach to analyzing gene expression data. Physiol Genomics. 2000 Jun 29;3(1):9–15. doi: 10.1152/physiolgenomics.2000.3.1.9. [DOI] [PubMed] [Google Scholar]
- Young R. A. Biomedical discovery with DNA arrays. Cell. 2000 Jul 7;102(1):9–15. doi: 10.1016/s0092-8674(00)00005-2. [DOI] [PubMed] [Google Scholar]
- Zhan Fenghuang, Hardin Johanna, Kordsmeier Bob, Bumm Klaus, Zheng Mingzhong, Tian Erming, Sanderson Ralph, Yang Yang, Wilson Carla, Zangari Maurizio. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood. 2002 Mar 1;99(5):1745–1757. doi: 10.1182/blood.v99.5.1745. [DOI] [PubMed] [Google Scholar]
- Zhang M., Gong Y., Assy N., Minuk G. Y. Increased GABAergic activity inhibits alpha-fetoprotein mRNA expression and the proliferative activity of the HepG2 human hepatocellular carcinoma cell line. J Hepatol. 2000 Jan;32(1):85–91. doi: 10.1016/s0168-8278(00)80193-2. [DOI] [PubMed] [Google Scholar]
- Zhou Cheng-Ji, Inagaki Nobuya, Pleasure Samuel J., Zhao Li-Xia, Kikuyama Sakae, Shioda Seiji. ATP-binding cassette transporter ABCA2 (ABC2) expression in the developing spinal cord and PNS during myelination. J Comp Neurol. 2002 Sep 30;451(4):334–345. doi: 10.1002/cne.10354. [DOI] [PubMed] [Google Scholar]
- de Jong Hidde. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67–103. doi: 10.1089/10665270252833208. [DOI] [PubMed] [Google Scholar]
- von Dassow G., Meir E., Munro E. M., Odell G. M. The segment polarity network is a robust developmental module. Nature. 2000 Jul 13;406(6792):188–192. doi: 10.1038/35018085. [DOI] [PubMed] [Google Scholar]