Abstract
Retroviruses and LTR retrotransposons comprise two long-terminal repeats (LTRs) bounding a central domain that encodes the products needed for reverse transcription, packaging, and integration into the genome. We describe a group of retrotransposons in 13 species and four genera of the grass tribe Triticeae, including barley, with long, approximately 4.4-kb LTRs formerly called Sukkula elements. The approximately 3.5-kb central domains include reverse transcriptase priming sites and are conserved in sequence but contain no open reading frames encoding typical retrotransposon proteins. However, they specify well-conserved RNA secondary structures. These features describe a novel group of elements, called LARDs or large retrotransposon derivatives (LARDs). These appear to be members of the gypsy class of LTR retrotransposons. Although apparently nonautonomous, LARDs appear to be transcribed and can be recombinationally mapped due to the polymorphism of their insertion sites. They are dispersed throughout the genome in an estimated 1.3 x 10(3) full-length copies and 1.16 x 10(4) solo LTRs, indicating frequent recombinational loss of internal domains as demonstrated also for the BARE-1 barley retrotransposon.
Full Text
The Full Text of this article is available as a PDF (862.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonhoeffer S., McCaskill J. S., Stadler P. F., Schuster P. RNA multi-structure landscapes. A study based on temperature dependent partition functions. Eur Biophys J. 1993;22(1):13–24. doi: 10.1007/BF00205808. [DOI] [PubMed] [Google Scholar]
- Boyko Elena, Kalendar Ruslan, Korzun Victor, Fellers John, Korol Abraham, Schulman Alan H., Gill Bikram S. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol. 2002 Mar-Apr;48(5-6):767–790. doi: 10.1023/a:1014831511810. [DOI] [PubMed] [Google Scholar]
- Casacuberta J. M., Vernhettes S., Grandbastien M. A. Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J. 1995 Jun 1;14(11):2670–2678. doi: 10.1002/j.1460-2075.1995.tb07265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driscoll M. D., Golinelli M. P., Hughes S. H. In vitro analysis of human immunodeficiency virus type 1 minus-strand strong-stop DNA synthesis and genomic RNA processing. J Virol. 2001 Jan;75(2):672–686. doi: 10.1128/JVI.75.2.672-686.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flavell A. J., Dunbar E., Anderson R., Pearce S. R., Hartley R., Kumar A. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 1992 Jul 25;20(14):3639–3644. doi: 10.1093/nar/20.14.3639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frankel A. D., Young J. A. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem. 1998;67:1–25. doi: 10.1146/annurev.biochem.67.1.1. [DOI] [PubMed] [Google Scholar]
- Friant S., Heyman T., Wilhelm F. X., Wilhelm M. Role of RNA primers in initiation of minus-strand and plus-strand DNA synthesis of the yeast retrotransposon Ty1. Biochimie. 1996;78(7):674–680. doi: 10.1016/s0300-9084(96)80013-7. [DOI] [PubMed] [Google Scholar]
- Hartl D. L., Lozovskaya E. R., Lawrence J. G. Nonautonomous transposable elements in prokaryotes and eukaryotes. Genetica. 1992;86(1-3):47–53. doi: 10.1007/BF00133710. [DOI] [PubMed] [Google Scholar]
- Heidmann T., Heidmann O., Nicolas J. F. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2219–2223. doi: 10.1073/pnas.85.7.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins D. G., Thompson J. D., Gibson T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402. doi: 10.1016/s0076-6879(96)66024-8. [DOI] [PubMed] [Google Scholar]
- Hofacker Ivo L., Fekete Martin, Stadler Peter F. Secondary structure prediction for aligned RNA sequences. J Mol Biol. 2002 Jun 21;319(5):1059–1066. doi: 10.1016/S0022-2836(02)00308-X. [DOI] [PubMed] [Google Scholar]
- Hsiao C., Chatterton N. J., Asay K. H., Jensen K. B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome. 1995 Apr;38(2):211–223. doi: 10.1139/g95-026. [DOI] [PubMed] [Google Scholar]
- Hudakova S., Michalek W., Presting G. G., ten Hoopen R., dos Santos K., Jasencakova Z., Schubert I. Sequence organization of barley centromeres. Nucleic Acids Res. 2001 Dec 15;29(24):5029–5035. doi: 10.1093/nar/29.24.5029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004 Dec 9;432(7018):695–716. doi: 10.1038/nature03154. [DOI] [PubMed] [Google Scholar]
- Jaeger J. A., Turner D. H., Zuker M. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 1990;183:281–306. doi: 10.1016/0076-6879(90)83019-6. [DOI] [PubMed] [Google Scholar]
- Jiang Ning, Bao Zhirong, Temnykh Svetlana, Cheng Zhukuan, Jiang Jiming, Wing Rod A., McCouch Susan R., Wessler Susan R. Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics. 2002 Jul;161(3):1293–1305. doi: 10.1093/genetics/161.3.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang Ning, Jordan I. King, Wessler Susan R. Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol. 2002 Dec;130(4):1697–1705. doi: 10.1104/pp.015412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalendar R., Tanskanen J., Immonen S., Nevo E., Schulman A. H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603–6607. doi: 10.1073/pnas.110587497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerwood D. J., Cavaluzzi M. J., Borer P. N. Structure of SL4 RNA from the HIV-1 packaging signal. Biochemistry. 2001 Dec 4;40(48):14518–14529. doi: 10.1021/bi0111909. [DOI] [PubMed] [Google Scholar]
- Kumar A., Bennetzen J. L. Plant retrotransposons. Annu Rev Genet. 1999;33:479–532. doi: 10.1146/annurev.genet.33.1.479. [DOI] [PubMed] [Google Scholar]
- Kumekawa N., Ohtsubo H., Horiuchi T., Ohtsubo E. Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol Gen Genet. 1999 Jan;260(6):593–602. doi: 10.1007/s004380050933. [DOI] [PubMed] [Google Scholar]
- Manninen O., Kalendar R., Robinson J., Schulman A. H. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet. 2000 Oct;264(3):325–334. doi: 10.1007/s004380000326. [DOI] [PubMed] [Google Scholar]
- Marquet R., Isel C., Ehresmann C., Ehresmann B. tRNAs as primer of reverse transcriptases. Biochimie. 1995;77(1-2):113–124. doi: 10.1016/0300-9084(96)88114-4. [DOI] [PubMed] [Google Scholar]
- McAllister B. F., Werren J. H. Phylogenetic analysis of a retrotransposon with implications for strong evolutionary constraints on reverse transcriptase. Mol Biol Evol. 1997 Jan;14(1):69–80. doi: 10.1093/oxfordjournals.molbev.a025704. [DOI] [PubMed] [Google Scholar]
- Meyers B. C., Tingey S. V., Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 2001 Oct;11(10):1660–1676. doi: 10.1101/gr.188201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monfort A., Vicient C. M., Raz R., Puigdomènech P., Martínez-Izquierdo J. A. Molecular analysis of a putative transposable retroelement from the Zea genus with internal clusters of tandem repeats. DNA Res. 1995 Dec 31;2(6):255–261. doi: 10.1093/dnares/2.6.255. [DOI] [PubMed] [Google Scholar]
- Peleg Ofer, Brunak Søren, Trifonov Edward N., Nevo Eviatar, Bolshoy Alexander. RNA secondary structure and squence conservation in C1 region of human immunodeficiency virus type 1 env gene. AIDS Res Hum Retroviruses. 2002 Aug 10;18(12):867–878. doi: 10.1089/08892220260190353. [DOI] [PubMed] [Google Scholar]
- Petersen G., Seberg O. Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol Phylogenet Evol. 1997 Apr;7(2):217–230. doi: 10.1006/mpev.1996.0389. [DOI] [PubMed] [Google Scholar]
- SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
- Schneider T. D., Stephens R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990 Oct 25;18(20):6097–6100. doi: 10.1093/nar/18.20.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986 Apr 5;188(3):415–431. doi: 10.1016/0022-2836(86)90165-8. [DOI] [PubMed] [Google Scholar]
- Schultz S. J., Zhang M., Kelleher C. D., Champoux J. J. Analysis of plus-strand primer selection, removal, and reutilization by retroviral reverse transcriptases. J Biol Chem. 2000 Oct 13;275(41):32299–32309. doi: 10.1074/jbc.M000021200. [DOI] [PubMed] [Google Scholar]
- Shirasu K., Schulman A. H., Lahaye T., Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000 Jul;10(7):908–915. doi: 10.1101/gr.10.7.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siebert P. D., Chenchik A., Kellogg D. E., Lukyanov K. A., Lukyanov S. A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995 Mar 25;23(6):1087–1088. doi: 10.1093/nar/23.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suoniemi A., Anamthawat-Jónsson K., Arna T., Schulman A. H. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol. 1996 Mar;30(6):1321–1329. doi: 10.1007/BF00019563. [DOI] [PubMed] [Google Scholar]
- Suoniemi A., Schmidt D., Schulman A. H. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica. 1997;100(1-3):219–230. [PubMed] [Google Scholar]
- Suoniemi A., Tanskanen J., Pentikäinen O., Johnson M. S., Schulman A. H. The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution. Mol Biol Evol. 1998 Sep;15(9):1135–1144. doi: 10.1093/oxfordjournals.molbev.a026021. [DOI] [PubMed] [Google Scholar]
- Suoniemi A., Tanskanen J., Schulman A. H. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 1998 Mar;13(5):699–705. doi: 10.1046/j.1365-313x.1998.00071.x. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vicient C. M., Jäskeläinen M. J., Kalendar R., Schulman A. H. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 2001 Mar;125(3):1283–1292. doi: 10.1104/pp.125.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell. 1999 Sep;11(9):1769–1784. doi: 10.1105/tpc.11.9.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voytas D. F., Cummings M. P., Koniczny A., Ausubel F. M., Rodermel S. R. copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7124–7128. doi: 10.1073/pnas.89.15.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E., Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 2001 May;26(3):307–316. doi: 10.1046/j.1365-313x.2001.01028.x. [DOI] [PubMed] [Google Scholar]
- Witte C. P., Le Q. H., Bureau T., Kumar A. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13778–13783. doi: 10.1073/pnas.241341898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J., Bogerd H., Le S. Y., Cullen B. R. The human endogenous retrovirus K Rev response element coincides with a predicted RNA folding region. RNA. 2000 Nov;6(11):1551–1564. doi: 10.1017/s135583820000100x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeeberg Barry. Shannon information theoretic computation of synonymous codon usage biases in coding regions of human and mouse genomes. Genome Res. 2002 Jun;12(6):944–955. doi: 10.1101/gr.213402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
- Zuker M. Prediction of RNA secondary structure by energy minimization. Methods Mol Biol. 1994;25:267–294. doi: 10.1385/0-89603-276-0:267. [DOI] [PubMed] [Google Scholar]
- Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]