Skip to main content
Genetics logoLink to Genetics
. 2004 Mar;166(3):1405–1418. doi: 10.1534/genetics.166.3.1405

Genetics of postzygotic isolation in Eucalyptus: whole-genome analysis of barriers to introgression in a wide interspecific cross of Eucalyptus grandis and E. globulus.

Alexander A Myburg 1, Claus Vogl 1, A Rod Griffin 1, Ronald R Sederoff 1, Ross W Whetten 1
PMCID: PMC1470765  PMID: 15082559

Abstract

The genetic architecture of hybrid fitness characters can provide valuable insights into the nature and evolution of postzygotic reproductive barriers in diverged species. We determined the genome-wide distribution of barriers to introgression in an F(1) hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and E. globulus (Labill.). Two interspecific backcross families (N = 186) were used to construct comparative, single-tree, genetic linkage maps of an F(1) hybrid individual and two backcross parents. A total of 1354 testcross AFLP marker loci were evaluated in the three parental maps and a substantial proportion (27.7% average) exhibited transmission ratio distortion (alpha = 0.05). The distorted markers were located in distinct regions of the parental maps and marker alleles within each region were all biased toward either of the two parental species. We used a Bayesian approach to estimate the position and effect of transmission ratio distorting loci (TRDLs) in the distorted regions of each parental linkage map. The relative viability of TRDL alleles ranged from 0.20 to 0.72. Contrary to expectation, heterospecific (donor) alleles of TRDLs were favored as often as recurrent alleles in both backcrosses, suggesting that positive and negative heterospecific interactions affect introgression rates in this wide interspecific pedigree.

Full Text

The Full Text of this article is available as a PDF (359.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borevitz Justin O., Liang David, Plouffe David, Chang Hur-Song, Zhu Tong, Weigel Detlef, Berry Charles C., Winzeler Elizabeth, Chory Joanne. Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res. 2003 Mar;13(3):513–523. doi: 10.1101/gr.541303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brondani Rosana P. V., Brondani C., Grattapaglia D. Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics. 2002 Apr 5;267(3):338–347. doi: 10.1007/s00438-002-0665-6. [DOI] [PubMed] [Google Scholar]
  3. Burke J. M., Arnold M. L. Genetics and the fitness of hybrids. Annu Rev Genet. 2001;35:31–52. doi: 10.1146/annurev.genet.35.102401.085719. [DOI] [PubMed] [Google Scholar]
  4. Burow M. D., Simpson C. E., Starr J. L., Paterson A. H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics. 2001 Oct;159(2):823–837. doi: 10.1093/genetics/159.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fishman L., Kelly A. J., Morgan E., Willis J. H. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics. 2001 Dec;159(4):1701–1716. doi: 10.1093/genetics/159.4.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fishman L., Willis J. H. Evidence for Dobzhansky-Muller incompatibilites contributing to the sterility of hybrids between Mimulus guttatus and M. nasutus. Evolution. 2001 Oct;55(10):1932–1942. doi: 10.1111/j.0014-3820.2001.tb01311.x. [DOI] [PubMed] [Google Scholar]
  7. Fu Y. B., Ritland K. Evidence for the partial dominance of viability genes contributing to inbreeding depression in Mimulus guttatus. Genetics. 1994 Jan;136(1):323–331. doi: 10.1093/genetics/136.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu Y. B., Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression. Genetics. 1996 Sep;144(1):339–348. doi: 10.1093/genetics/144.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grattapaglia D., Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994 Aug;137(4):1121–1137. doi: 10.1093/genetics/137.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harushima Y., Nakagahra M., Yano M., Sasaki T., Kurata N. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics. 2001 Oct;159(2):883–892. doi: 10.1093/genetics/159.2.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jiang C. X., Chee P. W., Draye X., Morrell P. L., Smith C. W., Paterson A. H. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution. 2000 Jun;54(3):798–814. doi: 10.1111/j.0014-3820.2000.tb00081.x. [DOI] [PubMed] [Google Scholar]
  12. Lopez G. A., Potts B. M., Tilyard P. A. F1 hybrid inviability in eucalyptus: the case of E. ovata x E. globulus. Heredity (Edinb) 2000 Sep;85(Pt 3):242–250. doi: 10.1046/j.1365-2540.2000.00739.x. [DOI] [PubMed] [Google Scholar]
  13. Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics. 1995 Jul;140(3):1105–1109. doi: 10.1093/genetics/140.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Myburg A. A., Griffin A. R., Sederoff R. R., Whetten R. W. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet. 2003 Jul 1;107(6):1028–1042. doi: 10.1007/s00122-003-1347-4. [DOI] [PubMed] [Google Scholar]
  15. Myburg A. A., Remington D. L., O'Malley D. M., Sederoff R. R., Whetten R. W. High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques. 2001 Feb;30(2):348-52, 354, 356-7. doi: 10.2144/01302tt04. [DOI] [PubMed] [Google Scholar]
  16. Orr H. A., Turelli M. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution. 2001 Jun;55(6):1085–1094. doi: 10.1111/j.0014-3820.2001.tb00628.x. [DOI] [PubMed] [Google Scholar]
  17. Peng J., Korol A. B., Fahima T., Röder M. S., Ronin Y. I., Li Y. C., Nevo E. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 2000 Oct;10(10):1509–1531. doi: 10.1101/gr.150300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ramsay L., Macaulay M., degli Ivanissevich S., MacLean K., Cardle L., Fuller J., Edwards K. J., Tuvesson S., Morgante M., Massari A. A simple sequence repeat-based linkage map of barley. Genetics. 2000 Dec;156(4):1997–2005. doi: 10.1093/genetics/156.4.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Remington D. L., O'Malley D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000 May;155(1):337–348. doi: 10.1093/genetics/155.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Remington D. L., Whetten R. W., Liu B. H., O'Malley D. M. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet. 1999 Jun;98(8):1279–1292. doi: 10.1007/s001220051194. [DOI] [PubMed] [Google Scholar]
  21. Rieseberg L. H., Baird S. J., Gardner K. A. Hybridization, introgression, and linkage evolution. Plant Mol Biol. 2000 Jan;42(1):205–224. [PubMed] [Google Scholar]
  22. Rieseberg L. H. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):351–358. doi: 10.1016/s0169-5347(01)02187-5. [DOI] [PubMed] [Google Scholar]
  23. Rieseberg L. H., Linder C. R., Seiler G. J. Chromosomal and genic barriers to introgression in Helianthus. Genetics. 1995 Nov;141(3):1163–1171. doi: 10.1093/genetics/141.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM. Role of Gene Interactions in Hybrid Speciation: Evidence from Ancient and Experimental Hybrids. Science. 1996 May 3;272(5262):741–745. doi: 10.1126/science.272.5262.741. [DOI] [PubMed] [Google Scholar]
  25. Ting C. T., Tsaur S. C., Wu M. L., Wu C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science. 1998 Nov 20;282(5393):1501–1504. doi: 10.1126/science.282.5393.1501. [DOI] [PubMed] [Google Scholar]
  26. Turelli M., Orr H. A. Dominance, epistasis and the genetics of postzygotic isolation. Genetics. 2000 Apr;154(4):1663–1679. doi: 10.1093/genetics/154.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Verhaegen D., Plomion C. Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome. 1996 Dec;39(6):1051–1061. doi: 10.1139/g96-132. [DOI] [PubMed] [Google Scholar]
  28. Vogl C., Xu S. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics. 2000 Jul;155(3):1439–1447. doi: 10.1093/genetics/155.3.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Whitkus R. Genetics of adaptive radiation in Hawaiian and Cook Islands species of Tetramolopium (Asteraceae). II. Genetic linkage map and its implications for interspecific breeding barriers. Genetics. 1998 Nov;150(3):1209–1216. doi: 10.1093/genetics/150.3.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES