Skip to main content
Genetics logoLink to Genetics
. 2004 Mar;166(3):1253–1267. doi: 10.1534/genetics.166.3.1253

A genetic screen for neurite outgrowth mutants in Caenorhabditis elegans reveals a new function for the F-box ubiquitin ligase component LIN-23.

Nehal Mehta 1, Paula M Loria 1, Oliver Hobert 1
PMCID: PMC1470768  PMID: 15082545

Abstract

Axon pathfinding and target recognition are highly dynamic and tightly regulated cellular processes. One of the mechanisms involved in regulating protein activity levels during axonal and synaptic development is protein ubiquitination. We describe here the isolation of several Caenorhabditis elegans mutants, termed eno (ectopic/erratic neurite outgrowth) mutants, that display defects in axon outgrowth of specific neuron classes. One retrieved mutant is characterized by abnormal termination of axon outgrowth in a subset of several distinct neuron classes, including ventral nerve cord motor neurons, head motor neurons, and mechanosensory neurons. This mutant is allelic to lin-23, which codes for an F-box-containing component of an SCF E3 ubiquitin ligase complex that was previously shown to negatively regulate postembryonic cell divisions. We demonstrate that LIN-23 is a broadly expressed cytoplasmically localized protein that is required autonomously in neurons to affect axon outgrowth. Our newly isolated allele of lin-23, a point mutation in the C-terminal tail of the protein, displays axonal outgrowth defects similar to those observed in null alleles of this gene, but does not display defects in cell cycle regulation. We have thus defined separable activities of LIN-23 in two distinct processes, cell cycle control and axon patterning. We propose that LIN-23 targets distinct substrates for ubiquitination within each process.

Full Text

The Full Text of this article is available as a PDF (620.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altun-Gultekin Z., Andachi Y., Tsalik E. L., Pilgrim D., Kohara Y., Hobert O. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development. 2001 Jun;128(11):1951–1969. doi: 10.1242/dev.128.11.1951. [DOI] [PubMed] [Google Scholar]
  2. Bach Ingolf, Ostendorff Heather P. Orchestrating nuclear functions: ubiquitin sets the rhythm. Trends Biochem Sci. 2003 Apr;28(4):189–195. doi: 10.1016/S0968-0004(03)00055-0. [DOI] [PubMed] [Google Scholar]
  3. Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., Elledge S. J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996 Jul 26;86(2):263–274. doi: 10.1016/s0092-8674(00)80098-7. [DOI] [PubMed] [Google Scholar]
  4. Brown M. C., Holland R. L., Hopkins W. G. Motor nerve sprouting. Annu Rev Neurosci. 1981;4:17–42. doi: 10.1146/annurev.ne.04.030181.000313. [DOI] [PubMed] [Google Scholar]
  5. Burbea Michelle, Dreier Lars, Dittman Jeremy S., Grunwald Maria E., Kaplan Joshua M. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron. 2002 Jul 3;35(1):107–120. doi: 10.1016/s0896-6273(02)00749-3. [DOI] [PubMed] [Google Scholar]
  6. Campbell D. S., Holt C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron. 2001 Dec 20;32(6):1013–1026. doi: 10.1016/s0896-6273(01)00551-7. [DOI] [PubMed] [Google Scholar]
  7. Clifford R., Lee M. H., Nayak S., Ohmachi M., Giorgini F., Schedl T. FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development. 2000 Dec;127(24):5265–5276. doi: 10.1242/dev.127.24.5265. [DOI] [PubMed] [Google Scholar]
  8. Corsi A. K., Kostas S. A., Fire A., Krause M. Caenorhabditis elegans twist plays an essential role in non-striated muscle development. Development. 2000 May;127(10):2041–2051. doi: 10.1242/dev.127.10.2041. [DOI] [PubMed] [Google Scholar]
  9. Craig K. L., Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol. 1999;72(3):299–328. doi: 10.1016/s0079-6107(99)00010-3. [DOI] [PubMed] [Google Scholar]
  10. DiAntonio A., Haghighi A. P., Portman S. L., Lee J. D., Amaranto A. M., Goodman C. S. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature. 2001 Jul 26;412(6845):449–452. doi: 10.1038/35086595. [DOI] [PubMed] [Google Scholar]
  11. Eastman C., Horvitz H. R., Jin Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci. 1999 Aug 1;19(15):6225–6234. doi: 10.1523/JNEUROSCI.19-15-06225.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grima Brigitte, Lamouroux Annie, Chélot Elisabeth, Papin Christian, Limbourg-Bouchon Bernadette, Rouyer François. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature. 2002 Nov 14;420(6912):178–182. doi: 10.1038/nature01122. [DOI] [PubMed] [Google Scholar]
  13. Hammarlund M., Davis W. S., Jorgensen E. M. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J Cell Biol. 2000 May 15;149(4):931–942. doi: 10.1083/jcb.149.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harfe B. D., Fire A. Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development. 1998 Feb;125(3):421–429. doi: 10.1242/dev.125.3.421. [DOI] [PubMed] [Google Scholar]
  15. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993 Nov 19;75(4):805–816. doi: 10.1016/0092-8674(93)90499-g. [DOI] [PubMed] [Google Scholar]
  16. Hedgecock E. M., Culotti J. G., Hall D. H., Stern B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987 Jul;100(3):365–382. doi: 10.1242/dev.100.3.365. [DOI] [PubMed] [Google Scholar]
  17. Hedgecock E. M., Culotti J. G., Thomson J. N., Perkins L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol. 1985 Sep;111(1):158–170. doi: 10.1016/0012-1606(85)90443-9. [DOI] [PubMed] [Google Scholar]
  18. Hegde A. N., Goldberg A. L., Schwartz J. H. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7436–7440. doi: 10.1073/pnas.90.16.7436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hegde A. N., Inokuchi K., Pei W., Casadio A., Ghirardi M., Chain D. G., Martin K. C., Kandel E. R., Schwartz J. H. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell. 1997 Apr 4;89(1):115–126. doi: 10.1016/s0092-8674(00)80188-9. [DOI] [PubMed] [Google Scholar]
  20. Hegde Ashok N., DiAntonio Aaron. Ubiquitin and the synapse. Nat Rev Neurosci. 2002 Nov;3(11):854–861. doi: 10.1038/nrn961. [DOI] [PubMed] [Google Scholar]
  21. Hicke Linda, Dunn Rebecca. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol. 2003;19:141–172. doi: 10.1146/annurev.cellbio.19.110701.154617. [DOI] [PubMed] [Google Scholar]
  22. Hobert O., Tessmar K., Ruvkun G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development. 1999 Apr;126(7):1547–1562. doi: 10.1242/dev.126.7.1547. [DOI] [PubMed] [Google Scholar]
  23. Hobert Oliver. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques. 2002 Apr;32(4):728–730. doi: 10.2144/02324bm01. [DOI] [PubMed] [Google Scholar]
  24. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439. doi: 10.1146/annurev.genet.30.1.405. [DOI] [PubMed] [Google Scholar]
  25. Hu G., Zhang S., Vidal M., Baer J. L., Xu T., Fearon E. R. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev. 1997 Oct 15;11(20):2701–2714. doi: 10.1101/gad.11.20.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huang Xun, Cheng Hwai Jong, Tessier-Lavigne Marc, Jin Yishi. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron. 2002 May 16;34(4):563–576. doi: 10.1016/s0896-6273(02)00672-4. [DOI] [PubMed] [Google Scholar]
  27. Hubbard E. J., Wu G., Kitajewski J., Greenwald I. sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 1997 Dec 1;11(23):3182–3193. doi: 10.1101/gad.11.23.3182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jiang J., Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998 Jan 29;391(6666):493–496. doi: 10.1038/35154. [DOI] [PubMed] [Google Scholar]
  29. Joazeiro C. A., Weissman A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000 Sep 1;102(5):549–552. doi: 10.1016/s0092-8674(00)00077-5. [DOI] [PubMed] [Google Scholar]
  30. Keleman Krystyna, Rajagopalan Srikanth, Cleppien Diana, Teis David, Paiha Karin, Huber Lukas A., Technau Gerhard M., Dickson Barry J. Comm sorts robo to control axon guidance at the Drosophila midline. Cell. 2002 Aug 23;110(4):415–427. doi: 10.1016/s0092-8674(02)00901-7. [DOI] [PubMed] [Google Scholar]
  31. Kipreos E. T., Gohel S. P., Hedgecock E. M. The C. elegans F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development. 2000 Dec;127(23):5071–5082. doi: 10.1242/dev.127.23.5071. [DOI] [PubMed] [Google Scholar]
  32. Ko Hyuk Wan, Jiang Jin, Edery Isaac. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature. 2002 Nov 20;420(6916):673–678. doi: 10.1038/nature01272. [DOI] [PubMed] [Google Scholar]
  33. Loria Paula M., Duke Angie, Rand James B., Hobert Oliver. Two neuronal, nuclear-localized RNA binding proteins involved in synaptic transmission. Curr Biol. 2003 Aug 5;13(15):1317–1323. doi: 10.1016/s0960-9822(03)00532-3. [DOI] [PubMed] [Google Scholar]
  34. Macias Maria J., Wiesner Silke, Sudol Marius. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002 Feb 20;513(1):30–37. doi: 10.1016/s0014-5793(01)03290-2. [DOI] [PubMed] [Google Scholar]
  35. McIntire S. L., Garriga G., White J., Jacobson D., Horvitz H. R. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992 Feb;8(2):307–322. doi: 10.1016/0896-6273(92)90297-q. [DOI] [PubMed] [Google Scholar]
  36. McIntire S. L., Jorgensen E., Horvitz H. R. Genes required for GABA function in Caenorhabditis elegans. Nature. 1993 Jul 22;364(6435):334–337. doi: 10.1038/364334a0. [DOI] [PubMed] [Google Scholar]
  37. McIntire S. L., Reimer R. J., Schuske K., Edwards R. H., Jorgensen E. M. Identification and characterization of the vesicular GABA transporter. Nature. 1997 Oct 23;389(6653):870–876. doi: 10.1038/39908. [DOI] [PubMed] [Google Scholar]
  38. Myat Anna, Henry Pauline, McCabe Veronica, Flintoft Louisa, Rotin Daniela, Tear Guy. Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Neuron. 2002 Aug 1;35(3):447–459. doi: 10.1016/s0896-6273(02)00795-x. [DOI] [PubMed] [Google Scholar]
  39. Nonet M. L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J Neurosci Methods. 1999 Jul 1;89(1):33–40. doi: 10.1016/s0165-0270(99)00031-x. [DOI] [PubMed] [Google Scholar]
  40. Peckol E. L., Zallen J. A., Yarrow J. C., Bargmann C. I. Sensory activity affects sensory axon development in C. elegans. Development. 1999 May;126(9):1891–1902. doi: 10.1242/dev.126.9.1891. [DOI] [PubMed] [Google Scholar]
  41. Schaefer A. M., Hadwiger G. D., Nonet M. L. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron. 2000 May;26(2):345–356. doi: 10.1016/s0896-6273(00)81168-x. [DOI] [PubMed] [Google Scholar]
  42. Tanaka Hiroyuki, Yamashita Toshihide, Asada Minoru, Mizutani Shuki, Yoshikawa Hideki, Tohyama Masaya. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol. 2002 Jul 15;158(2):321–329. doi: 10.1083/jcb.200202071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wojcik E. J., Glover D. M., Hays T. S. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr Biol. 2000 Sep 21;10(18):1131–1134. doi: 10.1016/s0960-9822(00)00703-x. [DOI] [PubMed] [Google Scholar]
  45. Wu G., Hubbard E. J., Kitajewski J. K., Greenwald I. Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15787–15791. doi: 10.1073/pnas.95.26.15787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wu J., Duggan A., Chalfie M. Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes Dev. 2001 Mar 15;15(6):789–802. doi: 10.1101/gad.857401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yamamoto N., Hegde A. N., Chain D. G., Schwartz J. H. Activation and degradation of the transcription factor C/EBP during long-term facilitation in Aplysia. J Neurochem. 1999 Dec;73(6):2415–2423. doi: 10.1046/j.1471-4159.1999.0732415.x. [DOI] [PubMed] [Google Scholar]
  48. Yaron A., Hatzubai A., Davis M., Lavon I., Amit S., Manning A. M., Andersen J. S., Mann M., Mercurio F., Ben-Neriah Y. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature. 1998 Dec 10;396(6711):590–594. doi: 10.1038/25159. [DOI] [PubMed] [Google Scholar]
  49. Zallen J. A., Kirch S. A., Bargmann C. I. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development. 1999 Aug;126(16):3679–3692. doi: 10.1242/dev.126.16.3679. [DOI] [PubMed] [Google Scholar]
  50. Zallen J. A., Peckol E. L., Tobin D. M., Bargmann C. I. Neuronal cell shape and neurite initiation are regulated by the Ndr kinase SAX-1, a member of the Orb6/COT-1/warts serine/threonine kinase family. Mol Biol Cell. 2000 Sep;11(9):3177–3190. doi: 10.1091/mbc.11.9.3177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zheng Ning, Schulman Brenda A., Song Langzhou, Miller Julie J., Jeffrey Philip D., Wang Ping, Chu Claire, Koepp Deanna M., Elledge Stephen J., Pagano Michele. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002 Apr 18;416(6882):703–709. doi: 10.1038/416703a. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES