Skip to main content
Genetics logoLink to Genetics
. 2004 Mar;166(3):1281–1289. doi: 10.1534/genetics.166.3.1281

Differential effects of Drosophila mastermind on asymmetric cell fate specification and neuroblast formation.

Barry Yedvobnick 1, Anumeha Kumar 1, Padmashree Chaudhury 1, Jonathan Opraseuth 1, Nathan Mortimer 1, Krishna Moorthi Bhat 1
PMCID: PMC1470772  PMID: 15082547

Abstract

During neurogenesis in the ventral nerve cord of the Drosophila embryo, Notch signaling participates in the pathway that mediates asymmetric fate specification to daughters of secondary neuronal precursor cells. In the NB4-2 --> GMC-1 --> RP2/sib lineage, a well-studied neuronal lineage in the ventral nerve cord, Notch signaling specifies sib fate to one of the daughter cells of GMC-1. Notch mediates this process via Mastermind (Mam). Loss of function for mam, similar to loss of function for Notch, results in GMC-1 symmetrically dividing to generate two RP2 neurons. Loss of function for mam also results in a severe neurogenic phenotype. In this study, we have undertaken a functional analysis of the Mam protein. We show that while ectopic expression of a truncated Mam protein induces a dominant-negative neurogenic phenotype, it has no effect on asymmetric fate specification. This truncated Mam protein rescues the loss of asymmetric specification phenotype in mam in an allele-specific manner. We also show an interallelic complementation of loss-of-asymmetry defect. Our results suggest that Mam proteins might associate during the asymmetric specification of cell fates and that the N-terminal region of the protein plays a role in this process.

Full Text

The Full Text of this article is available as a PDF (322.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  2. Barolo Scott, Stone Tammie, Bang Anne G., Posakony James W. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev. 2002 Aug 1;16(15):1964–1976. doi: 10.1101/gad.987402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bettler D., Pearson S., Yedvobnick B. The nuclear protein encoded by the Drosophila neurogenic gene mastermind is widely expressed and associates with specific chromosomal regions. Genetics. 1996 Jun;143(2):859–875. doi: 10.1093/genetics/143.2.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhat K. M., Poole S. J., Schedl P. The miti-mere and pdm1 genes collaborate during specification of the RP2/sib lineage in Drosophila neurogenesis. Mol Cell Biol. 1995 Aug;15(8):4052–4063. doi: 10.1128/mcb.15.8.4052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhat K. M., Schedl P. The Drosophila miti-mere gene, a member of the POU family, is required for the specification of the RP2/sibling lineage during neurogenesis. Development. 1994 Jun;120(6):1483–1501. doi: 10.1242/dev.120.6.1483. [DOI] [PubMed] [Google Scholar]
  6. Bhat K. M. Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays. 1999 Jun;21(6):472–485. doi: 10.1002/(SICI)1521-1878(199906)21:6<472::AID-BIES4>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  7. Bossing T., Udolph G., Doe C. Q., Technau G. M. The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol. 1996 Oct 10;179(1):41–64. doi: 10.1006/dbio.1996.0240. [DOI] [PubMed] [Google Scholar]
  8. Buescher M., Yeo S. L., Udolph G., Zavortink M., Yang X., Tear G., Chia W. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes Dev. 1998 Jun 15;12(12):1858–1870. doi: 10.1101/gad.12.12.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doe C. Q. Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development. 1992 Dec;116(4):855–863. doi: 10.1242/dev.116.4.855. [DOI] [PubMed] [Google Scholar]
  10. Dye C. A., Lee J. K., Atkinson R. C., Brewster R., Han P. L., Bellen H. J. The Drosophila sanpodo gene controls sibling cell fate and encodes a tropomodulin homolog, an actin/tropomyosin-associated protein. Development. 1998 May;125(10):1845–1856. doi: 10.1242/dev.125.10.1845. [DOI] [PubMed] [Google Scholar]
  11. Fryer Christy J., Lamar Elise, Turbachova Ivana, Kintner Chris, Jones Katherine A. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 2002 Jun 1;16(11):1397–1411. doi: 10.1101/gad.991602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heitzler P., Simpson P. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development. 1993 Mar;117(3):1113–1123. doi: 10.1242/dev.117.3.1113. [DOI] [PubMed] [Google Scholar]
  13. Helms W., Lee H., Ammerman M., Parks A. L., Muskavitch M. A., Yedvobnick B. Engineered truncations in the Drosophila mastermind protein disrupt Notch pathway function. Dev Biol. 1999 Nov 15;215(2):358–374. doi: 10.1006/dbio.1999.9477. [DOI] [PubMed] [Google Scholar]
  14. Kitagawa M., Oyama T., Kawashima T., Yedvobnick B., Kumar A., Matsuno K., Harigaya K. A human protein with sequence similarity to Drosophila mastermind coordinates the nuclear form of notch and a CSL protein to build a transcriptional activator complex on target promoters. Mol Cell Biol. 2001 Jul;21(13):4337–4346. doi: 10.1128/MCB.21.13.4337-4346.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knoblich J. A., Jan L. Y., Jan Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature. 1995 Oct 19;377(6550):624–627. doi: 10.1038/377624a0. [DOI] [PubMed] [Google Scholar]
  16. Lear B. C., Skeath J. B., Patel N. H. Neural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system. Mech Dev. 1999 Nov;88(2):207–219. doi: 10.1016/s0925-4773(99)00190-2. [DOI] [PubMed] [Google Scholar]
  17. Mumm J. S., Kopan R. Notch signaling: from the outside in. Dev Biol. 2000 Dec 15;228(2):151–165. doi: 10.1006/dbio.2000.9960. [DOI] [PubMed] [Google Scholar]
  18. Parks A. L., Klueg K. M., Stout J. R., Muskavitch M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development. 2000 Apr;127(7):1373–1385. doi: 10.1242/dev.127.7.1373. [DOI] [PubMed] [Google Scholar]
  19. Pascal E., Tjian R. Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev. 1991 Sep;5(9):1646–1656. doi: 10.1101/gad.5.9.1646. [DOI] [PubMed] [Google Scholar]
  20. Petcherski A. G., Kimble J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature. 2000 May 18;405(6784):364–368. doi: 10.1038/35012645. [DOI] [PubMed] [Google Scholar]
  21. Petcherski A. G., Kimble J. Mastermind is a putative activator for Notch. Curr Biol. 2000 Jun 29;10(13):R471–R473. doi: 10.1016/s0960-9822(00)00577-7. [DOI] [PubMed] [Google Scholar]
  22. Ramain P., Khechumian K., Seugnet L., Arbogast N., Ackermann C., Heitzler P. Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol. 2001 Nov 13;11(22):1729–1738. doi: 10.1016/s0960-9822(01)00562-0. [DOI] [PubMed] [Google Scholar]
  23. Schmid A. T., Tinley T. L., Yedvobnick B. Transcription of the neurogenic gene mastermind during Drosophila development. J Exp Zool. 1996 Mar 1;274(4):207–220. doi: 10.1002/(SICI)1097-010X(19960301)274:4<207::AID-JEZ1>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  24. Schmidt H., Rickert C., Bossing T., Vef O., Urban J., Technau G. M. The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol. 1997 Sep 15;189(2):186–204. doi: 10.1006/dbio.1997.8660. [DOI] [PubMed] [Google Scholar]
  25. Schuldt A. J., Brand A. H. Mastermind acts downstream of notch to specify neuronal cell fates in the Drosophila central nervous system. Dev Biol. 1999 Jan 15;205(2):287–295. doi: 10.1006/dbio.1998.9014. [DOI] [PubMed] [Google Scholar]
  26. Skeath J. B., Doe C. Q. Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development. 1998 May;125(10):1857–1865. doi: 10.1242/dev.125.10.1857. [DOI] [PubMed] [Google Scholar]
  27. Smoller D., Friedel C., Schmid A., Bettler D., Lam L., Yedvobnick B. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 1990 Oct;4(10):1688–1700. doi: 10.1101/gad.4.10.1688. [DOI] [PubMed] [Google Scholar]
  28. Spana E. P., Doe C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron. 1996 Jul;17(1):21–26. doi: 10.1016/s0896-6273(00)80277-9. [DOI] [PubMed] [Google Scholar]
  29. Spana E. P., Doe C. Q. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development. 1995 Oct;121(10):3187–3195. doi: 10.1242/dev.121.10.3187. [DOI] [PubMed] [Google Scholar]
  30. Tang T. T., Bickel S. E., Young L. M., Orr-Weaver T. L. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Dev. 1998 Dec 15;12(24):3843–3856. doi: 10.1101/gad.12.24.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wai P., Truong B., Bhat K. M. Cell division genes promote asymmetric interaction between Numb and Notch in the Drosophila CNS. Development. 1999 Jun;126(12):2759–2770. doi: 10.1242/dev.126.12.2759. [DOI] [PubMed] [Google Scholar]
  32. Wu L., Aster J. C., Blacklow S. C., Lake R., Artavanis-Tsakonas S., Griffin J. D. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000 Dec;26(4):484–489. doi: 10.1038/82644. [DOI] [PubMed] [Google Scholar]
  33. Ye Y., Lukinova N., Fortini M. E. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature. 1999 Apr 8;398(6727):525–529. doi: 10.1038/19096. [DOI] [PubMed] [Google Scholar]
  34. Yedvobnick B., Smoller D., Young P., Mills D. Molecular analysis of the neurogenic locus mastermind of Drosophila melanogaster. Genetics. 1988 Mar;118(3):483–497. doi: 10.1093/genetics/118.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES