Abstract
Drosophila larvae defend themselves against parasitoid wasps by completely surrounding the egg with layers of specialized hemocytes called lamellocytes. Similar capsules of lamellocytes, called melanotic capsules, are also formed around "self" tissues in larvae carrying gain-of-function mutations in Toll and hopscotch. Constitutive differentiation of lamellocytes in larvae carrying these mutations is accompanied by high concentrations of plasmatocytes, the major hemocyte class in uninfected control larvae. The relative contributions of hemocyte concentration vs. lamellocyte differentiation to wasp egg encapsulation are not known. To address this question, we used Leptopilina boulardi to infect more than a dozen strains of host larvae harboring a wide range of hemocyte densities. We report a significant correlation between hemocyte concentration and encapsulation capacity among wild-type larvae and larvae heterozygous for mutations in the Hopscotch-Stat92E and Toll-Dorsal pathways. Larvae carrying loss-of-function mutations in Hopscotch, Stat92E, or dorsal group genes exhibit significant reduction in encapsulation capacity. Larvae carrying loss-of-function mutations in dorsal group genes (including Toll and tube) have reduced hemocyte concentrations, whereas larvae deficient in Hopscotch-Stat92E signaling do not. Surprisingly, unlike hopscotch mutants, Toll and tube mutants are not compromised in their ability to generate lamellocytes. Our results suggest that circulating hemocyte concentration and lamellocyte differentiation constitute two distinct physiological requirements of wasp egg encapsulation and Toll and Hopscotch proteins serve distinct roles in this process.
Full Text
The Full Text of this article is available as a PDF (488.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asha H., Nagy Istvan, Kovacs Gabor, Stetson Daniel, Ando Istvan, Dearolf Charles R. Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics. 2003 Jan;163(1):203–215. doi: 10.1093/genetics/163.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benassi V., Frey F., Carton Y. A new specific gene for wasp cellular immune resistance in Drosophila. Heredity (Edinb) 1998 Mar;80(Pt 3):347–352. doi: 10.1046/j.1365-2540.1998.00303.x. [DOI] [PubMed] [Google Scholar]
- Betz A., Lampen N., Martinek S., Young M. W., Darnell J. E., Jr A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9563–9568. doi: 10.1073/pnas.171302098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carton Y., Boulétreau M. Encapsulation ability of Drosophila melanogaster: a genetic analysis. Dev Comp Immunol. 1985 Spring;9(2):211–219. doi: 10.1016/0145-305x(85)90112-0. [DOI] [PubMed] [Google Scholar]
- Carton Y., Nappi A. J. Drosophila cellular immunity against parasitoids. Parasitol Today. 1997 Jun;13(6):218–227. doi: 10.1016/s0169-4758(97)01058-2. [DOI] [PubMed] [Google Scholar]
- Fellowes M. D., Kraaijeveld A. R., Godfray H. C. Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc Biol Sci. 1998 Aug 22;265(1405):1553–1558. doi: 10.1098/rspb.1998.0471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo X., Beerntsen B. T., Zhao X., Christensen B. M. Hemocyte alterations during melanotic encapsulation of Brugia malayi in the mosquito Armigeres subalbatus. J Parasitol. 1995 Apr;81(2):200–207. [PubMed] [Google Scholar]
- Harrison D. A., McCoon P. E., Binari R., Gilman M., Perrimon N. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev. 1998 Oct 15;12(20):3252–3263. doi: 10.1101/gad.12.20.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hita M. T., Poirié M., Leblanc N., Lemeunier F., Lutcher F., Frey F., Periquet G., Carton Y. Genetic localization of a Drosophila melanogaster resistance gene to a parasitoid wasp and physical mapping of the region. Genome Res. 1999 May;9(5):471–481. [PMC free article] [PubMed] [Google Scholar]
- Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
- Hou Steven X., Zheng Zhiyu, Chen Xiu, Perrimon Norbert. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev Cell. 2002 Dec;3(6):765–778. doi: 10.1016/s1534-5807(02)00376-3. [DOI] [PubMed] [Google Scholar]
- Hyman B. T., West H. L., Rebeck G. W., Buldyrev S. V., Mantegna R. N., Ukleja M., Havlin S., Stanley H. E. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3586–3590. doi: 10.1073/pnas.92.8.3586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraaijeveld A. R., Godfray H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature. 1997 Sep 18;389(6648):278–280. doi: 10.1038/38483. [DOI] [PubMed] [Google Scholar]
- Lanot R., Zachary D., Holder F., Meister M. Postembryonic hematopoiesis in Drosophila. Dev Biol. 2001 Feb 15;230(2):243–257. doi: 10.1006/dbio.2000.0123. [DOI] [PubMed] [Google Scholar]
- Lavine M. D., Strand M. R. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 2002 Oct;32(10):1295–1309. doi: 10.1016/s0965-1748(02)00092-9. [DOI] [PubMed] [Google Scholar]
- Luo H., Hanratty W. P., Dearolf C. R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 1995 Apr 3;14(7):1412–1420. doi: 10.1002/j.1460-2075.1995.tb07127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo H., Rose P., Barber D., Hanratty W. P., Lee S., Roberts T. M., D'Andrea A. D., Dearolf C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol. 1997 Mar;17(3):1562–1571. doi: 10.1128/mcb.17.3.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munier Anne-Isabelle, Doucet Daniel, Perrodou Emmanuel, Zachary Daniel, Meister Marie, Hoffmann Jules A., Janeway Charles A., Jr, Lagueux Marie. PVF2, a PDGF/VEGF-like growth factor, induces hemocyte proliferation in Drosophila larvae. EMBO Rep. 2002 Nov 21;3(12):1195–1200. doi: 10.1093/embo-reports/kvf242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pharoah Paul D. P., Antoniou Antonis, Bobrow Martin, Zimmern Ron L., Easton Douglas F., Ponder Bruce A. J. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002 Mar 4;31(1):33–36. doi: 10.1038/ng853. [DOI] [PubMed] [Google Scholar]
- Prévost G., Eslin P. Hemocyte load and immune resistance to Asobara tabida are correlated in species of the Drosophila melanogaster subgroup. J Insect Physiol. 1998 Sep;44(9):807–816. doi: 10.1016/s0022-1910(98)00013-4. [DOI] [PubMed] [Google Scholar]
- Qiu P., Pan P. C., Govind S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development. 1998 May;125(10):1909–1920. doi: 10.1242/dev.125.10.1909. [DOI] [PubMed] [Google Scholar]
- Ravindranath M. H., Anantaraman S. The cystacanth of Moniliformis moniliformis (Bremser, 1811) and its relationship with the haemocytes of the intermediate host (Periplaneta americana). Z Parasitenkd. 1977 Sep 21;53(2):225–237. doi: 10.1007/BF00380467. [DOI] [PubMed] [Google Scholar]
- Rizki T. M., Rizki R. M., Bellotti R. A. Genetics of a Drosophila phenoloxidase. Mol Gen Genet. 1985;201(1):7–13. doi: 10.1007/BF00397978. [DOI] [PubMed] [Google Scholar]
- Rizki T. M., Rizki R. M. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol. 1992 Mar-Jun;16(2-3):103–110. doi: 10.1016/0145-305x(92)90011-z. [DOI] [PubMed] [Google Scholar]
- Rock F. L., Hardiman G., Timans J. C., Kastelein R. A., Bazan J. F. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):588–593. doi: 10.1073/pnas.95.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russo J., Dupas S., Frey F., Carton Y., Brehelin M. Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology. 1996 Jan;112(Pt 1):135–142. doi: 10.1017/s0031182000065173. [DOI] [PubMed] [Google Scholar]
- Russo J, Brehélin M, Carton Y. Haemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. J Insect Physiol. 2001 Feb 1;47(2):167–172. doi: 10.1016/s0022-1910(00)00102-5. [DOI] [PubMed] [Google Scholar]
- Silvers M., Hanratty W. P. Alterations in the production of hemocytes due to a neoplastic mutation of Drosophila melanogaster. J Invertebr Pathol. 1984 Nov;44(3):324–328. doi: 10.1016/0022-2011(84)90030-2. [DOI] [PubMed] [Google Scholar]
- Sorrentino Richard Paul, Carton Yves, Govind Shubha. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev Biol. 2002 Mar 1;243(1):65–80. doi: 10.1006/dbio.2001.0542. [DOI] [PubMed] [Google Scholar]
- Tzou Phoebe, De Gregorio Ennio, Lemaitre Bruno. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol. 2002 Feb;5(1):102–110. doi: 10.1016/s1369-5274(02)00294-1. [DOI] [PubMed] [Google Scholar]
- Vinson S. B. Defense reaction and hemocytic changes in Heliothis virescens in response to its habitual parasitoid Cardiochiles nigriceps. J Invertebr Pathol. 1971 Jul;18(1):94–100. doi: 10.1016/0022-2011(91)90014-h. [DOI] [PubMed] [Google Scholar]
- Ward A. C., Touw I., Yoshimura A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood. 2000 Jan 1;95(1):19–29. [PubMed] [Google Scholar]